330 research outputs found
Unintended perturbation of protein function using GFP nanobodies in human cells
Tagging a protein of interest with GFP using genome editing is a popular approach to study protein function in cell and developmental biology. To avoid re-engineering cell lines or organisms in order to introduce additional tags, functionalized nanobodies that bind GFP can be used to extend the functionality of the GFP tag. We developed functionalized nanobodies, which we termed βdonglesβ, that could add, for example, an FKBP tag to a GFP-tagged protein of interest, enabling knocksideways experiments in GFP knock-in cell lines. The power of knocksideways is that it allows investigators to rapidly switch the protein from an active to an inactive state. We show that dongles allow for effective knocksideways of GFP-tagged proteins in genome-edited human cells. However, we discovered that nanobody binding to dynamin-2βGFP caused inhibition of dynamin function prior to knocksideways. The function of GFP-tagged tumor protein D54 (TPD54, also known as TPD52L2) in anterograde traffic was also perturbed by dongles. While these issues potentially limit the application of dongles, we discuss strategies for their deployment as cell biological tools
Economics of Malaria Prevention in US Travelers to West Africa
Background. Pretravel health consultations help international travelers manage travel-related illness risks through education, vaccination, and medication. This study evaluated costs and benefits of that portion of the health consultation associated with malaria prevention provided to US travelers bound for West Africa. Methods. The estimated change in disease risk and associated costs and benefits resulting from traveler adherence to malaria chemoprophylaxis were calculated from 2 perspectives: the healthcare payer's and the traveler's. We used data from the Global TravEpiNet network of US travel clinics that collect de-identified pretravel data for international travelers. Disease risk and chemoprophylaxis effectiveness were estimated from published medical reports. Direct medical costs were obtained from the Nationwide Inpatient Sample and published literature. Results. We analyzed 1029 records from January 2009 to January 2011. Assuming full adherence to chemoprophylaxis regimens, consultations saved healthcare payers a per-traveler average of 372 (30-day trip). For travelers, consultations resulted in a range of net cost of 32 (30-day trip). Differences were mostly driven by risk of malaria in the destination country. Conclusions. Our model suggests that healthcare payers save money for short- and longer-term trips, and that travelers save money for longer trips when travelers adhere to malaria recommendations and prophylactic regimens in West Africa. This is a potential incentive to healthcare payers to offer consistent pretravel preventive care to travelers. This financial benefit complements the medical benefit of reducing the risk of malaria
Susceptibility to Vibrio cholerae Infection in a Cohort of Household Contacts of Patients with Cholera in Bangladesh
Vibrio cholerae is the bacterium that causes cholera, a severe form of diarrhea that leads to rapid and potentially fatal dehydration when the infection is not treated promptly. Cholera remains an important cause of diarrhea globally, and V. cholerae continues to cause major epidemics in the most vulnerable populations. Although there have been recent discoveries about how the bacterium adapts to the human intestine and causes diarrhea, there is little understanding of why some people are protected from infection with V. cholerae. This article describes several factors that are associated with the risk of developing V. cholerae infection among people living in the same household with a patient with severe cholera who are at high risk of contracting the infection. One of the findings is that IgA antibodies, a type of antibody associated with immunity at mucosal surfaces such as the intestine, that target several components of the bacteria are associated with immunity to V. cholerae infection. This article also describes genetic and nutritional factors that additionally influence susceptibility to V. cholerae infection
Immunologic Responses to Vibrio cholerae in Patients Co-Infected with Intestinal Parasites in Bangladesh
Vibrio cholerae causes cholera, a severe diarrhea that may lead to fatal dehydration if not treated. Cholera occurs mostly in impoverished areas where there is poor sanitation and intestinal parasites are also common. However, little is known about the relationship between intestinal parasites and cholera. To learn about how parasites affect the immune response to Vibrio cholerae, this article describes 361 patients with cholera, including 53 who had intestinal parasitic infection. We found that cholera patients with parasitic worms had decreased antibody response to cholera toxin. The decrease was greatest in IgA antibodies, which are secreted in the intestine. However, patients with worm infection did not have a difference in their immune response to lipopolysaccharide, a sugar-based molecule that is important for immunity. These different effects on the immune response to cholera toxin and lipopolysaccharide could be explained by the effect of parasitic infection on CD4+ T cells, a type of cell that influences the development of the antibody response to proteins such as cholera toxin but may not always influence the response to sugar-based molecules. The finding that worm infection is associated with decreased immune responses to cholera provides an additional reason for deworming in cholera-endemic areas
Individuals with Le(a+bβ) Blood Group Have Increased Susceptibility to Symptomatic Vibrio cholerae O1 Infection
Cholera remains a severe diarrheal disease, capable of causing extensive outbreaks and high mortality. Blood group is one of the genetic factors determining predisposition to disease, including infectious diseases. Expression of different Lewis or ABO blood group types has been shown to be associated with risk of different enteric infections. For example, individuals of blood group O have a higher risk of severe illness due to V. cholerae compared to those with non-blood group O antigens. In this study, we have determined the relationship of the Lewis blood group antigen phenotypes with the risk of symptomatic cholera as well as the severity of disease and immune responses following infection. We show that individuals expressing the Le(a+bβ) phenotype were more susceptible to symptomatic cholera, while Le(aβb+) expressing individuals were less susceptible. Individuals with the Le(aβbβ) blood group had a longer duration of diarrhea when infected, required more intravenous fluid replacement, and had lower plasma IgA antibody responses to V. cholerae LPS on day 7 following infection. We conclude that there is an association between the Lewis blood group and the risk of cholera, and that this risk may affect the outcome of infection as well as possibly the efficacy of vaccination
Recommended from our members
A variant in long palate, lung and nasal epithelium clone 1 is associated with cholera in a Bangladeshi population
Vibrio cholerae causes a dehydrating diarrheal illness that can be rapidly fatal in the absence of specific treatment. The organism is an historic scourge and, like similar infectious diseases, may have influenced the evolution of the human genome. We report here the results of the first candidate gene association study of cholera. In a family-based study of 76 pedigrees from Dhaka, Bangladesh, we evaluated the association between cholera and five candidate genesβthe cystic fibrosis transmembrane receptor; lactoferrin; long palate, lung and nasal epithelium clone 1 (LPLUNC1); estrogen-related receptor alpha and calcium-activated chloride channel 1. We found a significant association with a marker in the promoter region of LPLUNC1 (rs11906665), a member of a family of evolutionarily conserved innate immunity proteins. An earlier microarray-based study of duodenal biopsies showed significantly increased expression of LPLUNC1 in cholera patients compared with healthy control subjects. Our results suggest that variation in host innate immune responses may influence the outcome of exposure to V. cholerae in an endemic setting.Organismic and Evolutionary BiologyOther Research Uni
Intraregional variability in chironomid-inferred temperature estimates and the influence of river inundations on lacustrine chironomid assemblages.
Floodplain lakes are rarely analysed for fossil chironomids and usually not incorporated in modern chironomid-climate calibration datasets because of the potential complex hydrological processes that could result from flooding of the lakes. In order to investigate this potential influence of river inundations on fossil chironomid assemblages, 13 regularly inundated lakes and 20 lakes isolated from riverine influence were sampled and their surface sediments analysed for subfossil chironomid assemblages. The physical and chemical settings of all lakes were similar, although the variation in the environmental variables was higher in the lakes isolated from riverine influence. Chironomid concentration and taxon richness show significant differences between the two classes of lakes, and the variation in these variables is best explained by loss-on-ignition of the sediments (LOI). Relative chironomid abundances show some differences between the two groups of lakes, with several chironomid taxa occurring preferentially in one of the two lake-types. The variability in chironomid assemblages is also best explained by LOI. Application of a chironomid-temperature inference model shows that both types of lakes reconstruct July air temperatures that are equal to, or slightly underestimating, the measured temperature of the region. We conclude that, although there are some differences between the chironomid assemblages of floodplain lakes and of isolated lakes, these differences do not have a major effect on chironomid-based temperature reconstruction. Β© 2007 Springer Science+Business Media B.V
Comparative Proteomic Analysis of the PhoP Regulon in Salmonella enterica Serovar Typhi Versus Typhimurium
Background: S. Typhi, a human-restricted Salmonella enterica serovar, causes a systemic intracellular infection in humans (typhoid fever). In comparison, S. Typhimurium causes gastroenteritis in humans, but causes a systemic typhoidal illness in mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately regulated network of genes whose expression is required for intracellular survival of S. enterica. Methodology/Principal Findings: Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS), we examined the protein expression profiles of three sequenced S. enterica strains: S. Typhimurium LT2, S. Typhi CT18, and S. Typhi Ty2 in PhoP-inducing and non-inducing conditions in vitro and compared these results to profiles of mutants derived from S. Typhimurium LT2 and S. Typhi Ty2. Our analysis identified 53 proteins in S. Typhimurium LT2 and 56 proteins in S. Typhi that were regulated in a PhoP-dependent manner. As expected, many proteins identified in S. Typhi demonstrated concordant differential expression with a homologous protein in S. Typhimurium. However, three proteins (HlyE, STY1499, and CdtB) had no homolog in S. Typhimurium. HlyE is a pore-forming toxin. STY1499 encodes a stably expressed protein of unknown function transcribed in the same operon as HlyE. CdtB is a cytolethal distending toxin associated with DNA damage, cell cycle arrest, and cellular distension. Gene expression studies confirmed up-regulation of mRNA of HlyE, STY1499, and CdtB in S. Typhi in PhoP-inducing conditions. Conclusions/Significance: This study is the first protein expression study of the PhoP virulence associated regulon using strains of Salmonella mutant in PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499) that are not present in the genome of the wide host-range Typhimurium, and includes the first protein expression profiling of a live attenuated bacterial vaccine studied in humans (Ty800)
- β¦