150 research outputs found
A cryogenic surface-electrode elliptical ion trap for quantum simulation
Two-dimensional crystals of trapped ions are a promising system with which to
implement quantum simulations of challenging problems such as spin frustration.
Here, we present a design for a surface-electrode elliptical ion trap which
produces a 2-D ion crystal and is amenable to microfabrication, which would
enable higher simulated coupling rates, as well as interactions based on
magnetic forces generated by on-chip currents. Working in an 11 K cryogenic
environment, we experimentally verify to within 5% a numerical model of the
structure of ion crystals in the trap. We also explore the possibility of
implementing quantum simulation using magnetic forces, and calculate J-coupling
rates on the order of 10^3 / s for an ion crystal height of 10 microns, using a
current of 1 A
High threshold distributed quantum computing with three-qubit nodes
In the distributed quantum computing paradigm, well-controlled few-qubit
`nodes' are networked together by connections which are relatively noisy and
failure prone. A practical scheme must offer high tolerance to errors while
requiring only simple (i.e. few-qubit) nodes. Here we show that relatively
modest, three-qubit nodes can support advanced purification techniques and so
offer robust scalability: the infidelity in the entanglement channel may be
permitted to approach 10% if the infidelity in local operations is of order
0.1%. Our tolerance of network noise is therefore a order of magnitude beyond
prior schemes, and our architecture remains robust even in the presence of
considerable decoherence rates (memory errors). We compare the performance with
that of schemes involving nodes of lower and higher complexity. Ion traps, and
NV- centres in diamond, are two highly relevant emerging technologies.Comment: 5 figures, 12 pages in single column format. Revision has more
detailed comparison with prior scheme
Efficient Algorithms for Universal Quantum Simulation
A universal quantum simulator would enable efficient simulation of quantum
dynamics by implementing quantum-simulation algorithms on a quantum computer.
Specifically the quantum simulator would efficiently generate qubit-string
states that closely approximate physical states obtained from a broad class of
dynamical evolutions. I provide an overview of theoretical research into
universal quantum simulators and the strategies for minimizing computational
space and time costs. Applications to simulating many-body quantum simulation
and solving linear equations are discussed
Hole burning in a nanomechanical resonator coupled to a Cooper pair box
We propose a scheme to create holes in the statistical distribution of
excitations of a nanomechanical resonator. It employs a controllable coupling
between this system and a Cooper pair box. The success probability and the
fidelity are calculated and compared with those obtained in the atom-field
system via distinct schemes. As an application we show how to use the
hole-burning scheme to prepare (low excited) Fock states.Comment: 7 pages, 10 figure
Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity
We investigate theoretically the implementation of two-qubit gates in a
system of two coupled superconducting qubits. In particular, we analyze
two-qubit gate operations under the condition that the coupling strength is
comparable to or even larger than the anharmonicity of the qubits. By
numerically solving the time-dependent Schr\"odinger equation, we obtain the
dependence of the two-qubit gate fidelity on the system parameters in the case
of direct and indirect qubit-qubit coupling. Our numerical results can be used
to identify the "safe" parameter regime for experimentally implementing
two-qubit gates with high fidelity in these systems
Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators
Electrical resonators are widely used in quantum information processing, by engineering an electromagnetic interaction with qubits based on real or virtual exchange of microwave photons. This interaction relies on strong coupling between the qubits' transition dipole moments and the vacuum fluctuations of the resonator in the same manner as cavity quantum electrodynamics (QED), and has consequently come to be called 'circuit QED' (cQED). Great strides in the control of quantum information have already been made experimentally using this idea. However, the central role played by photon exchange induced by quantum fluctuations in cQED does result in some characteristic limitations. In this paper, we discuss an alternative method for coupling qubits electromagnetically via a resonator, in which no photons are exchanged, and where the resonator need not have strong quantum fluctuations. Instead, the interaction can be viewed in terms of classical, effective 'forces' exerted by the qubits on the resonator, and the resulting resonator dynamics used to produce qubit entanglement are purely classical in nature. We show how this type of interaction is similar to that encountered in the manipulation of atomic ion qubits, and we exploit this analogy to construct two-qubit entangling operations that are largely insensitive to thermal or other noise in the resonator, and to its quality factor. These operations are also extensible to larger numbers of qubits, allowing interactions to be selectively generated among any desired subset of those coupled to a single resonator. Our proposal is potentially applicable to a variety of physical qubit modalities, including superconducting and semiconducting solid-state qubits, trapped molecular ions, and possibly even electron spins in solids.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002
Dynamics of one-dimensional tight-binding models with arbitrary time-dependent external homogeneous fields
The exact propagators of two one-dimensional systems with time-dependent
external fields are presented by following the path-integral method. It is
shown that the Bloch acceleration theorem can be generalized to the
impulse-momentum theorem in quantum version. We demonstrate that an evolved
Gaussian wave packet always keeps its shape in an arbitrary time-dependent
homogeneous driven field. Moreover, that stopping and accelerating of a wave
packet can be achieved by the pulsed field in a diabatic way.Comment: 8 pages, 6 figure
Optical one-way quantum computing with a simulated valence-bond solid
One-way quantum computation proceeds by sequentially measuring individual
spins (qubits) in an entangled many-spin resource state. It remains a
challenge, however, to efficiently produce such resource states. Is it possible
to reduce the task of generating these states to simply cooling a quantum
many-body system to its ground state? Cluster states, the canonical resource
for one-way quantum computing, do not naturally occur as ground states of
physical systems. This led to a significant effort to identify alternative
resource states that appear as ground states in spin lattices. An appealing
candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb,
and Tasaki (AKLT). It is the unique, gapped ground state for a two-body
Hamiltonian on a spin-1 chain, and can be used as a resource for one-way
quantum computing. Here, we experimentally generate a photonic AKLT state and
use it to implement single-qubit quantum logic gates.Comment: 11 pages, 4 figures, 8 tables - added one referenc
Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons
We discuss the quantum-circuit realization of the state of a nucleon in the
scope of simple symmetry groups. Explicit algorithms are presented for the
preparation of the state of a neutron or a proton as resulting from the
composition of their quark constituents. We estimate the computational
resources required for such a simulation and design a photonic network for its
implementation. Moreover, we highlight that current work on three-body
interactions in lattices of interacting qubits, combined with the
measurement-based paradigm for quantum information processing, may also be
suitable for the implementation of these nucleonic spin states.Comment: 5 pages, 2 figures, RevTeX4; Accepted for publication in Quantum
Information Processin
Optical Trapping of an Ion
For several decades, ions have been trapped by radio frequency (RF) and
neutral particles by optical fields. We implement the experimental
proof-of-principle for trapping an ion in an optical dipole trap. While
loading, initialization and final detection are performed in a RF trap, in
between, this RF trap is completely disabled and substituted by the optical
trap. The measured lifetime of milliseconds allows for hundreds of oscillations
within the optical potential. It is mainly limited by heating due to photon
scattering. In future experiments the lifetime may be increased by further
detuning the laser and cooling the ion. We demonstrate the prerequisite to
merge both trapping techniques in hybrid setups to the point of trapping ions
and atoms in the same optical potential.Comment: 5 pages, 3 figure
- …