131 research outputs found
Functional specialization of transcription elongation factors
Elongation factors NusG and RfaH evolved from a common ancestor and utilize the same binding site on RNA polymerase (RNAP) to modulate transcription. However, although NusG associates with RNAP transcribing most Escherichia coli genes, RfaH regulates just a few operons containing ops, a DNA sequence that mediates RfaH recruitment. Here, we describe the mechanism by which this specificity is maintained. We observe that RfaH action is indeed restricted to those several operons that are devoid of NusG in vivo. We also show that RfaH and NusG compete for their effects on transcript elongation and termination in vitro. Our data argue that RfaH recognizes its DNA target even in the presence of NusG. Once recruited, RfaH remains stably associated with RNAP, thereby precluding NusG binding. We envision a pathway by which a specialized regulator has evolved in the background of its ubiquitous paralogue. We propose that RfaH and NusG may have opposite regulatory functions: although NusG appears to function in concert with Rho, RfaH inhibits Rho action and activates the expression of poorly translated, frequently foreign genes
Allosteric control of the RNA polymerase by the elongation factor RfaH
Efficient transcription of long polycistronic operons in bacteria frequently relies on accessory proteins but their molecular mechanisms remain obscure. RfaH is a cellular elongation factor that acts as a polarity suppressor by increasing RNA polymerase (RNAP) processivity. In this work, we provide evidence that RfaH acts by reducing transcriptional pausing at certain positions rather than by accelerating RNAP at all sites. We show that 'fast' RNAP variants are characterized by pause-free RNA chain elongation and are resistant to RfaH action. Similarly, the wild-type RNAP is insensitive to RfaH in the absence of pauses. In contrast, those enzymes that may be prone to falling into a paused state are hypersensitive to RfaH. RfaH inhibits pyrophosphorolysis of the nascent RNA and reduces the apparent Michaelis-Menten constant for nucleotides, suggesting that it stabilizes the post-translocated, active RNAP state. Given that the RfaH-binding site is located 75 A away from the RNAP catalytic center, these results strongly indicate that RfaH acts allosterically. We argue that despite the apparent differences in the nucleic acid targets, the time of recruitment and the binding sites on RNAP, unrelated antiterminators (such as RfaH and lambdaQ) utilize common strategies during both recruitment and anti-pausing modification of the transcription complex
Structural basis for converting a general transcription factor into an operon-specific virulence regulator
RfaH, a paralog of the general transcription factor NusG, is recruited to elongating RNA polymerase at specific regulatory sites. The X-ray structure of Escherichia coli RfaH reported here reveals two domains. The N-terminal domain displays high similarity to that of NusG. In contrast, the alpha-helical coiled-coil C domain, while retaining sequence similarity, is strikingly different from the beta barrel of NusG. To our knowledge, such an all-beta to all-alpha transition of the entire domain is the most extreme example of protein fold evolution known to date. Both N domains possess a vast hydrophobic cavity that is buried by the C domain in RfaH but is exposed in NusG. We propose that this cavity constitutes the RNA polymerase-binding site, which becomes unmasked in RfaH only upon sequence-specific binding to the nontemplate DNA strand that triggers domain dissociation. Finally, we argue that RfaH binds to the beta' subunit coiled coil, the major target site for the initiation sigma factors
A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea
An archaeal histone gene from the hyperthermophile Pyrococcus furiosus containing four consecutive putative oligo-dT terminator sequences was used as a model system to investigate termination signals and the mechanism of termination in vitro. The archaeal RNA polymerase terminated with high efficiency at the first terminator at 90°C when it contained five to six T residues, at 80°C readthrough was significantly increased. A putative hairpin structure upstream of the first terminator had no effect on termination efficiency. Template competition experiments starting with RNA polymerase molecules engaged in ternary complexes revealed recycling of RNA polymerase from the terminator to the promoter of the same template. This facilitated reinitiation was dependent upon the presence of a terminator sequence suggest-ing that pausing at the terminator is required for recycling as in the RNA polymerase III system. Replacement of the sequences immediately down-stream of the oligo-dT terminator by an AT-rich segment improved termination efficiency. Both AT-rich and GC-rich downstream sequences seemed to impair the facilitated reinitiation pathway. Our data suggest that recycling is dependent on a subtle interplay of pausing of RNA polymerase at the ter-minator and RNA polymerase translocation beyond the oligo-dT termination signal that is dramatically affected by downstream sequences
RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes
Upon RNA polymerase (RNAP) binding to a promoter, the s factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the beta' clamp domain plays the most prominent role. In this work, we investigate the role of the beta gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties
Transcription inactivation through local refolding of the RNA polymerase structure
Structural studies of antibiotics not only provide a shortcut to medicine allowing for rational structure-based drug design, but may also capture snapshots of dynamic intermediates that become 'frozen' after inhibitor binding. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Here we report the structure of dMyx--a desmethyl derivative of myxopyronin B--complexed with a Thermus thermophilus RNAP holoenzyme. The antibiotic binds to a pocket deep inside the RNAP clamp head domain, which interacts with the DNA template in the transcription bubble. Notably, binding of dMyx stabilizes refolding of the beta'-subunit switch-2 segment, resulting in a configuration that might indirectly compromise binding to, or directly clash with, the melted template DNA strand. Consistently, footprinting data show that the antibiotic binding does not prevent nucleation of the promoter DNA melting but instead blocks its propagation towards the active site. Myxopyronins are thus, to our knowledge, a first structurally characterized class of antibiotics that target formation of the pre-catalytic transcription initiation complex-the decisive step in gene expression control. Notably, mutations designed in switch-2 mimic the dMyx effects on promoter complexes in the absence of antibiotic. Overall, our results indicate a plausible mechanism of the dMyx action and a stepwise pathway of open complex formation in which core enzyme mediates the final stage of DNA melting near the transcription start site, and that switch-2 might act as a molecular checkpoint for DNA loading in response to regulatory signals or antibiotics. The universally conserved switch-2 may have the same role in all multisubunit RNAPs
Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ
Factor-dependent transcription termination mechanisms are poorly understood. We determined a series of cryo–electron microscopy structures portraying the hexameric adenosine triphosphatase (ATPase) ρ on a pathway to terminating NusA/NusG-modified elongation complexes. An open ρ ring contacts NusA, NusG, and multiple regions of RNA polymerase, trapping and locally unwinding proximal upstream DNA. NusA wedges into the ρ ring, initially sequestering RNA. Upon deflection of distal upstream DNA over the RNA polymerase zinc-binding domain, NusA rotates underneath one capping ρ subunit, which subsequently captures RNA. After detachment of NusG and clamp opening, RNA polymerase loses its grip on the RNA:DNA hybrid and is inactivated. Our structural and functional analyses suggest that ρ, and other termination factors across life, may use analogous strategies to allosterically trap transcription complexes in a moribund state
Water vapour in the atmosphere of a transiting extrasolar planet
Water is predicted to be among, if not the most abundant molecular species
after hydrogen in the atmospheres of close-in extrasolar giant planets
(hot-Jupiters) Several attempts have been made to detect water on an exoplanet,
but have failed to find compelling evidence for it or led to claims that should
be taken with caution. Here we report an analysis of recent observations of the
hot-Jupiter HD189733b taken during the transit, where the planet passed in
front of its parent star. We find that absorption by water vapour is the most
likely cause of the wavelength-dependent variations in the effective radius of
the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger
effective radius observed at visible wavelengths may be due to either star
variability or the presence of clouds/hazes. We explain the most recent thermal
infrared observations of the planet during secondary transit behind the star,
reporting a non-detection of water on HD189733b, as being a consequence of the
nearly isothermal vertical profile of the planet.s atmosphere. Our results show
that water is detectable on extrasolar planets using the primary transit
technique and that the infrared should be a better wavelength region than the
visible, for such searches
The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling
Cellular RNA polymerases (RNAPs) can become trapped on DNA or RNA, threatening genome stability and limiting free enzyme pools, but how RNAP recycling into active states is achieved remains elusive. In Bacillus subtilis, the RNAP δ subunit and NTPase HelD have been implicated in RNAP recycling. We structurally analyzed Bacillus subtilis RNAP-δ-HelD complexes. HelD has two long arms: a Gre cleavage factor-like coiled-coil inserts deep into the RNAP secondary channel, dismantling the active site and displacing RNA, while a unique helical protrusion inserts into the main channel, prying the β and β′ subunits apart and, aided by δ, dislodging DNA. RNAP is recycled when, after releasing trapped nucleic acids, HelD dissociates from the enzyme in an ATP-dependent manner. HelD abundance during slow growth and a dimeric (RNAP-δ-HelD)2 structure that resembles hibernating eukaryotic RNAP I suggest that HelD might also modulate active enzyme pools in response to cellular cues.</p
Stability of mRNA/DNA and DNA/DNA Duplexes Affects mRNA Transcription
Nucleic acids, due to their structural and chemical properties, can form double-stranded secondary structures that assist the transfer of genetic information and can modulate gene expression. However, the nucleotide sequence alone is insufficient in explaining phenomena like intron-exon recognition during RNA processing. This raises the question whether nucleic acids are endowed with other attributes that can contribute to their biological functions. In this work, we present a calculation of thermodynamic stability of DNA/DNA and mRNA/DNA duplexes across the genomes of four species in the genus Saccharomyces by nearest-neighbor method. The results show that coding regions are more thermodynamically stable than introns, 3′-untranslated regions and intergenic sequences. Furthermore, open reading frames have more stable sense mRNA/DNA duplexes than the potential antisense duplexes, a property that can aid gene discovery. The lower stability of the DNA/DNA and mRNA/DNA duplexes of 3′-untranslated regions and the higher stability of genes correlates with increased mRNA level. These results suggest that the thermodynamic stability of DNA/DNA and mRNA/DNA duplexes affects mRNA transcription
- …