626 research outputs found

    Hollowgraphy Driven Holography: Black Hole with Vanishing Volume Interior

    Full text link
    Hawking-Bekenstein entropy formula seems to tell us that no quantum degrees of freedom can reside in the interior of a black hole. We suggest that this is a consequence of the fact that the volume of any interior sphere of finite surface area simply vanishes. Obviously, this is not the case in general relativity. However, we show that such a phenomenon does occur in various gravitational theories which admit a spontaneously induced general relativity. In such theories, due to a phase transition (one parameter family degenerates) which takes place precisely at the would have been horizon, the recovered exterior Schwarzschild solution connects, by means of a self-similar transition profile, with a novel 'hollow' interior exhibiting a vanishing spatial volume and a locally varying Newton constant. This constitutes the so-called 'hollowgraphy' driven holography.Comment: Honorable Mention Essay - Gravity Research Foundation (2010

    Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity

    Get PDF
    This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects

    Entanglement, discord and the power of quantum computation

    Full text link
    We show that the ability to create entanglement is necessary for execution of bipartite quantum gates even when they are applied to unentangled states and create no entanglement. Starting with a simple example we demonstrate that to execute such a gate bi-locally the local operations and classical communications (LOCC) should be supplemented by shared entanglement. Our results point to the changes in quantum discord, which is a measure of quantumness of correlations even in the absence of entanglement, as the indicator of failure of a LOCC implementation of the gates.Comment: Published version. More results are adde

    Light-Heavy Symmetry: Geometric Mass Hierarchy for Three Families

    Get PDF
    The Universal Seesaw pattern coupled with a Light\leftrightarrowHeavy symmetry principle leads to the Diophantine equation N=i=1Nni\displaystyle N = \sum_{i=1}^Nn_i, where ni0n_i\geq 0 and distinct. Its unique non-trivial solution (3=0+1+2)(3=0+1+2) gives rise to the geometric mass hierarchy mWm_W, mWϵm_W\epsilon, mWϵ2m_W\epsilon^2 for N=3N=3 fermion families. This is realized in a model where the hybrid (yet Up\leftrightarrowDown symmetric) quark mass relations mdmtmc2mumbms2m_d m_t \approx m_c^2\leftrightarrow m_u m_b \approx m_s^2 play a crucial role in expressing the CKM mixings in terms of simple mass ratios, notably sinθCmcmb\sin\theta_C \approx {m_c\over m_b}.Comment: 12 pages, no figures, Revtex fil

    Polar Kerr Effect as Probe for Time-Reversal Symmetry Breaking in Unconventional Superconductors

    Full text link
    The search for broken time reversal symmetry (TRSB) in unconventional superconductors intensified in the past year as more systems have been predicted to possess such a state. Following our pioneering study of TRSB states in Sr2_2RuO4_4 using magneto-optic probes, we embarked on a systematic study of several other of these candidate systems. The primary instrument for our studies is the Sagnac magneto-optic interferometer, which we recently developed. This instrument can measure magneto-optic Faraday or Kerr effects with an unprecedented sensitivity of 10 nanoradians at temperatures as low as 100 mK. In this paper we review our recent studies of TRSB in several systems, emphasizing the study of the pseudogap state of high temperature superconductors and the inverse proximity effect in superconductor/ferromagnet proximity structures.Comment: A review pape

    Archaeal diversity in the Dead Sea: Microbial survival under increasingly harsh conditions

    Get PDF
    The Dead Sea is rapidly drying out. The lake is supersaturated with NaCl, and precipitated of halite from the water column has led to a decrease in sodium content, while concentrations of magnesium and calcium greatly increased, making the lake an ever more extreme environment for microbial life. In the past decades, blooms of algae (Dunaliella) and halophilic Archaea were twice observed in the lake (1980-1982 and 1992-1995), triggered by massive inflow of freshwater floods, but no conditions suitable for renewed microbial growth have occurred since. To examine whether the Death Sea in its current state (density 1.24 g ml-1, water activity about 0.67) still supports life of halophilic Archaea, we collected particulate matter from a depth of 5 m at an offshore station by means of tangential filtration. Presence of bacterioruberin carotenoids, albeit at low concentrations, in the particulate material showed the members of the Halobactericacae were still present in the lake\u27s water column. Amplification of 16S rRNA genes from the biomass yielded genes with less than 95% identify with environmental sequences reported from other environments and only 85-95% identity with cultivated Halobacteriaceae. It is thus shown that the Dead Sea, in spite of the ever more adverse conditions to life, supports a unique and varied community of halophilic Archaea. We have also isolated a number of strains of Halobacteriaceae from the samples collected, and their characterization is currently in progress
    corecore