2,367 research outputs found
Ultraviolet behavior in background independent quantum field theory
We describe a background independent quantization of the scalar field that
provides an explicit realization of Fock-like states and associated operators
in a polymer Hilbert space. The vacuum expectation values of the commutator and
anti-commutator of the creation and annihilation operators become energy
dependent, and exhibit a surprising transition to fermionic behavior at high
energy. Furthermore the approach yields a modified dispersion relation with a
leading correction proportional to the momentum cubed. These results suggests a
fundamental change in the ultraviolet properties of quantum fields.Comment: 8 pages, 5 figure
Dimension-Dependence of the Critical Exponent in Spherically Symmetric Gravitational Collapse
We study the critical behaviour of spherically symmetric scalar field
collapse to black holes in spacetime dimensions other than four. We obtain
reliable values for the scaling exponent in the supercritical region for
dimensions in the range . The critical exponent increases
monotonically to an asymptotic value at large of . The
data is well fit by a simple exponential of the form: .Comment: 5 pages, including 7 figures New version contains more data points,
one extra graph and more accurate error bars. No changes to result
Black hole solutions in 2+1 dimensions
We give circularly symmetric solutions for null fluid collapse in
2+1-dimensional Einstein gravity with a cosmological constant. The fluid
pressure and energy density are related by . The
long time limit of the solutions are black holes whose horizon structures
depend on the value of . The solution is the
Banados-Teitelboim-Zanelli black hole metric in the long time static limit,
while the solutions give other, `hairy' black hole metrics in this limit.Comment: 8 pages, RevTeX (to appear in Phys. Rev. D) References to Mann and
Ross, and Mann, Chan and Chan adde
Quantum Structure of Space Near a Black Hole Horizon
We describe a midi-superspace quantization scheme for generic single horizon
black holes in which only the spatial diffeomorphisms are fixed. The remaining
Hamiltonian constraint yields an infinite set of decoupled eigenvalue
equations: one at each spatial point. The corresponding operator at each point
is the product of the outgoing and ingoing null convergences, and describes the
scale invariant quantum mechanics of a particle moving in an attractive
potential. The variable that is analoguous to particle position is the
square root of the conformal mode of the metric. We quantize the theory via
Bohr quantization, which by construction turns the Hamiltonian constraint
eigenvalue equation into a finite difference equation. The resulting spectrum
gives rise to a discrete spatial topology exterior to the horizon. The spectrum
approaches the continuum in the asymptotic region.Comment: References added and typos corrected. 21 pages, 1 figur
Two dimensional general covariance from three dimensions
A 3d generally covariant field theory having some unusual properties is
described. The theory has a degenerate 3-metric which effectively makes it a 2d
field theory in disguise. For 2-manifolds without boundary, it has an infinite
number of conserved charges that are associated with graphs in two dimensions
and the Poisson algebra of the charges is closed. For 2-manifolds with boundary
there are additional observables that have a Kac-Moody Poisson algebra. It is
further shown that the theory is classically integrable and the general
solution of the equations of motion is given. The quantum theory is described
using Dirac quantization, and it is shown that there are quantum states
associated with graphs in two dimensions.Comment: 10 pages (Latex), Alberta-Thy-19-9
Quantum resolution of black hole singularities
We study the classical and quantum theory of spherically symmetric spacetimes
with scalar field coupling in general relativity. We utilise the canonical
formalism of geometrodynamics adapted to the Painleve-Gullstrand coordinates,
and present a new quantisation of the resulting field theory. We give an
explicit construction of operators that capture curvature properties of the
spacetime and use these to show that the black hole curvature singularity is
avoided in the quantum theory.Comment: 5 pages, version to appear in CQ
Einstein's equations and the chiral model
The vacuum Einstein equations for spacetimes with two commuting spacelike
Killing field symmetries are studied using the Ashtekar variables. The case of
compact spacelike hypersurfaces which are three-tori is considered, and the
determinant of the Killing two-torus metric is chosen as the time gauge. The
Hamiltonian evolution equations in this gauge may be rewritten as those of a
modified SL(2) principal chiral model with a time dependent `coupling
constant', or equivalently, with time dependent SL(2) structure constants. The
evolution equations have a generalized zero-curvature formulation. Using this
form, the explicit time dependence of an infinite number of
spatial-diffeomorphism invariant phase space functionals is extracted, and it
is shown that these are observables in the sense that they Poisson commute with
the reduced Hamiltonian. An infinite set of observables that have SL(2) indices
are also found. This determination of the explicit time dependence of an
infinite set of spatial-diffeomorphism invariant observables amounts to the
solutions of the Hamiltonian Einstein equations for these observables.Comment: 22 pages, RevTeX, to appear in Phys. Rev.
Can Black Holes Decay to Naked Singularities?
We investigate thermodynamic properties of two types of asymptotically
anti-de Sitter spacetimes: black holes and singular scalar field spacetimes. We
describe the possibility that thermodynamic phase transitions can transform one
spacetime into another, suggesting that black holes can radiate to naked
singularities.Comment: 5 pages, Essay for 2001 Gravity Research Foundation competition, to
appear in IJMP
- âŠ