6 research outputs found

    A High-Temperature, High-Voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches

    Get PDF
    High-temperature integrated circuit (IC) design is one of the new frontiers in microelectronics that can significantly improve the performance of the electrical systems in extreme environment applications, including automotive, aerospace, well-logging, geothermal, and nuclear. Power modules (DC-DC converters, inverters, etc.) are key components in these electrical systems. Power-to-volume and power-to-weight ratios of these modules can be significantly improved by employing silicon carbide (SiC) based power switches which are capable of operating at much higher temperature than silicon (Si) and gallium arsenide (GaAs) based conventional devices. For successful realization of such high-temperature power electronic circuits, associated control electronics also need to perform at high temperature. In any power converter, gate driver circuit performs as the interface between a low-power microcontroller and the semiconductor power switches. This dissertation presents design, implementation, and measurement results of a silicon-on-insulator (SOI) based high-temperature (\u3e200 _C) and high-voltage (\u3e30 V) universal gate driver integrated circuit with high drive current (\u3e3 A) for SiC power switches. This mixed signal IC has primarily been designed for automotive applications where the under-hood temperature can reach 200 _C. Prototype driver circuits have been designed and implemented in a Bipolar-CMOS- DMOS (BCD) on SOI process and have been successfully tested up to 200 _C ambient temperature driving SiC switches (MOSFET and JFET) without any heat sink and thermal management. This circuit can generate 30V peak-to-peak gate drive signal and can source and sink 3A peak drive current. Temperature compensating and temperature independent design techniques are employed to design the critical functional units like dead-time controller and level shifters in the driver circuit. Chip-level layout techniques are employed to enhance the reliability of the circuit at high temperature. High-temperature test boards have been developed to test the prototype ICs. An ultra low power on-chip temperature sensor circuit has also been designed and integrated into the gate-driver die to safeguard the driver circuit against excessive die temperature (_ 220 _C). This new temperature monitoring approach utilizes a reverse biased p-n junction diode as the temperature sensing element. Power consumption of this sensor circuit is less than 10 uW at 200 _C

    STI-2062-1

    Full text link
    This project investigated solar variability, power conversion and electric power grid response aspects of high penetration solar PV. These are the primary determining factors for acceptable penetration levels. Therefore, the study not only focused on the power system interactions, but also on the design of advanced power conditioners to explore more efficient design options and to look into advanced control impacts to the higher penetration PV deployment systems. Through extensive laboratory and field testing, the team gathered the essential information to better understand grid characteristics, PV systems configuration and power conditioning systems

    Large-Scale Modeling and DR Control of Electric Water Heaters With Energy Star and CTA-2045 Control Types in Distribution Power Systems

    Get PDF
    The paper proposes a generalized energy storage (GES) model for battery energy storage systems (BESS), electric water heaters (EWH) and heating, ventilation, and air-conditioning (HVAC) systems to enable demand response control complying to Energy Star and CTA-2045 standards. The demand response control has been implemented in the DER integration testbed, which was originally developed by EPRI, to demonstrate that the “energy content” and “energy take” for BESS and EWH with mixing valve technology are comparable for typical residential ratings. A distribution power system was modeled using the modified IEEE 123-bus feeder system, measured residential loads, and EWH power simulated based on realistic hot water draws from CBECC-Res software. The demand response control, which complies to CTA-2045 standards was implemented to the EWHs considering the energy take values. Results demonstrate that the EWHs can be controlled to postpone the peak power at the distribution system level and provide a large amount of energy storage, while maintaining system robustness. The impact on occupant comfort was also analyzed

    Generalized Energy Storage Model-in-the-Loop Suitable for Energy Star and CTA-2045 Control Types

    Get PDF
    The paper proposes a generalized energy storage (GES) model for battery energy storage systems (BESS), electric water heaters (EWH) and heating, ventilation, and air-conditioning (HVAC) systems. The analogies, including state of charge versus water temperature differential, are identified and explained, and models-in-the-loop (MIL) are introduced, which are compatible with the Energy Star and CTA-2045 general specifications and command types. Emphasis is placed on the proposed EWH model as it needfully fulfills a gap in present literature. The corresponding MIL has been implemented in the DER integration testbed, which was originally developed by EPRI, and satisfactorily validated against experimental results. A case study is included to illustrate that the daily “energy content” and “energy take” for BESS and EWH with mixing valve technology are comparable for typical residential ratings. The BESS, which requires more initial investment, has advantages in terms of flexibility for contributing to grid services, which are illustrated through a combined simulation and experimental study based on data collected from a field demonstration site with four smart homes
    corecore