627 research outputs found
Blister resistant targets for nuclear reaction experiments with α-particle beams
Solid targets for nuclear measurements that use α-particle beams commonly experience a form of degradation known as blistering. The effect can prevent the use of solid targets for high intensity α-particle experiments, often necessitating complex gas target systems. To combat this problem, three different blister resistant target backings were designed for use in direct reaction measurements with high intensity α-particle beams. The blister resistant target designs utilize gas diffusive properties of fused silica, sintered metal, and porous evaporated metal. Each target was implanted with 22 Ne ions and bombarded with α-particle beam to test blister resistance. Targets were characterized and monitored using the 22 Ne(p,γ) 23 Na reaction to determine the degradation of implanted material, and compare them to typical implanted noble gas targets. We find that all targets studied exhibit resistance to blistering, with the porous evaporated metal targets displaying the least amount of target material degradation
A controlled evaluation of an enhanced self-directed behavioural family intervention for parents of children with conduct problems in rural and remote areas.
Few studies have examined the impact of parenting interventions for families in rural and isolated areas who have children with conduct problems, where-access to professional services can be difficult. The present investigation compared the effects of three conditions, two levels of self-directed behavioral family intervention: an enhanced self-directed program that combined a self-help program using written materials and a weekly telephone consultation (ESD), a self-help program (SD) and a waitlist control group (WL). At postintervention the ESD group reported significantly lower levels of disruptive behaviour, and lower levels of dysfunctional parenting than the SD and WL controls, and higher levels of consumer satisfaction. At 6 months follow-up the main effects for the ESD group had been maintained. The SD group continued to evidence improvement from postintervention to follow-up such that 65% of children in the ESD condition and 57% of children in the SD condition showed clinical reliable change on measures of disruptive behaviour. Implications of findings and directions for future research are discussed
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Accurate river streamflow forecasts are a vital tool in the fields of water security, flood preparation and agriculture, as well as in industry more generally. Traditional physics-based models used to produce streamflow forecasts have become increasingly sophisticated, with forecasts improving accordingly. However, the development of such models is often bound by two soft limits: empiricism â many physical relationships are represented empirical formulae; and data sparsity â long time series of observational data are often required for the calibration of these models.
Artificial neural networks have previously been shown to be highly effective at simulating non-linear systems where knowledge of the underlying physical relationships is incomplete. However, they also suffer from issues related to data sparsity. Recently, hybrid forecasting systems, which combine the traditional physics-based approach with statistical forecasting techniques, have been investigated for use in hydrological applications. In this study, we test the efficacy of a type of neural network, the long short-term memory (LSTM), at predicting streamflow at 10 river gauge stations across various climatic regions of the western United States. The LSTM is trained on the catchment-mean meteorological and hydrological variables from the ERA5 and Global Flood Awareness System (GloFAS)âERA5 reanalyses as well as historical streamflow observations. The performance of these hybrid forecasts is evaluated and compared with the performance of both raw and bias-corrected output from the Copernicus Emergency Management Service (CEMS) physics-based GloFAS.
Two periods are considered, a testing phase (June 2019 to June 2020), during which the models were fed with ERA5 data to investigate how well they simulated streamflow at the 10 stations, and an operational phase (September 2020 to October 2021), during which the models were fed forecast variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS), to investigate how well they could predict streamflow at lead times of up to 10âd.
Implications and potential improvements to this work are discussed. In summary, this is the first time an LSTM has been used in a hybrid system to create a medium-range streamflow forecast, and in beating established physics-based models, shows promise for the future of neural networks in hydrological forecasting
Radiative Corrections to Double Dalitz Decays: Effects on Invariant Mass Distributions and Angular Correlations
We review the theory of meson decays to two lepton pairs, including the cases
of identical as well as non-identical leptons, as well as CP-conserving and
CP-violating couplings. A complete lowest-order calculation of QED radiative
corrections to these decays is discussed, and comparisons of predicted rates
and kinematic distributions between tree-level and one-loop-corrected
calculations are presented for both pi-zero and K-zero decays.Comment: 25 pages, 18 figures, added figures and commentar
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
Influence of incommensurate dynamic charge-density wave scattering on the line shape of high-T cuprates
We show that the spectral lineshape of superconducting
LaSrCuO (LSCO) and BiSrCaCuO (Bi2212)
can be well described by the coupling of the charge carriers to collective
incommensurate charge-density wave (CDW) excitations. Our results imply that
besides antiferromagnetic (AF) fluctuations also low-energy CDW modes can
contribute to the observed dip-hump structure in the Bi2212 photoemission
spectra. In case of underdoped LSCO we propose a possible interpretation of
ARPES data in terms of a grid pattern of fluctuating stripes where the charge
and spin scattering directions deviate by . Within this scenario
we find that the spectral intensity along is strongly
suppressed consistent with recent photoemission experiments. In addition the
incommensurate charge-density wave scattering leads to a significant broadening
of the quasiparticle-peak around .Comment: 5 pages, 4 figure
Dispersion of Ordered Stripe Phases in the Cuprates
A phase separation model is presented for the stripe phase of the cuprates,
which allows the doping dependence of the photoemission spectra to be
calculated. The idealized limit of a well-ordered array of magnetic and charged
stripes is analyzed, including effects of long-range Coulomb repulsion.
Remarkably, down to the limit of two-cell wide stripes, the dispersion can be
interpreted as essentially a superposition of the two end-phase dispersions,
with superposed minigaps associated with the lattice periodicity. The largest
minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk)
Van Hove singularity. The calculated spectra are dominated by two features --
this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a
strong correlation between these two features and the experimental
photoemission results of a two-peak dispersion in LaSrCuO, and
the peak-dip-hump spectra in BiSrCaCuO. The
differences are suggestive of the role of increasing stripe fluctuations. The
1/8 anomaly is associated with a quantum critical point, here expressed as a
percolation-like crossover. A model is proposed for the limiting minority
magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure
Monitoring Soil Quality to Assess the Sustainability of Harvesting Corn Stover
Harvesting feedstock for biofuel production must not degrade soil, water, or air resources. Our objective is to provide an overview of field research being conducted to quantify effects of harvesting corn (Zea mays L.) stover as a bioenergy feedstock. Coordinated field studies are being conducted near Ames, IA; St. Paul and Morris, MN; Mead, NE; University Park, PA; Florence, SC; and Brookings, SD., as part of the USDA-ARS Renewable Energy Assessment Project (REAP). A baseline soil quality assessment was made using the Soil Management Assessment Framework (SMAF). Corn grain and residue yield for two different stover harvest rates (âŒ50% and âŒ90%) are being measured. Available soil data remains quite limited but sufficient for an initial SMAF analysis that confirms total organic carbon (TOC) is a soil quality indicator that needs to be closely monitored closely to quantify crop residue removal effects. Overall, grain yields averaged 9.7 and 11.7 Mg haâ1 (155 and 186 bu acreâ1) in 2008 and 2009, values that are consistent with national averages for both years. The average amount of stover collected for the 50% treatment was 2.6 and 4.2 Mg haâ1 for 2008 and 2009, while the 90% treatment resulted in an average removal of 5.4 and 7.4 Mg haâ1, respectively. Based on a recent literature review, both stover harvest scenarios could result in a gradual decline in TOC. However, the literature value has a large standard error, so continuation of this long-term multi-location study for several years is warranted
Mesophyll porosity is modulated by the presence of functional stomata
The formation of stomata and leaf mesophyll airspace must be coordinated to establish an efficient and robust network that facilitates gas exchange for photosynthesis, however the mechanism by which this coordinated development occurs remains unclear. Here, we combine microCT and gas exchange analyses with measures of stomatal size and patterning in a range of wild, domesticated and transgenic lines of wheat and Arabidopsis to show that mesophyll airspace formation is linked to stomatal function in both monocots and eudicots. Our results support the hypothesis that gas flux via stomatal pores influences the degree and spatial patterning of mesophyll airspace formation, and indicate that this relationship has been selected for during the evolution of modern wheat. We propose that the coordination of stomata and mesophyll airspace pattern underpins water use efficiency in crops, providing a target for future improvement
- âŠ