268 research outputs found

    Induced spawning and larval rearing of the sea cucumber Holothuria nobilis

    Get PDF
    Sea cucumber Holothuria nobilis is an economically important species for livelihoods in many countries. However, an increase in demand for this species has led to the depletion of wild stocks. The introduction of this species in aquaculture is necessary to reduce fishing pressure. This study was taken to establish breeding and larval rearing techniques for the development of H. nobilis aquaculture. The broodstock collected from the wild were induced to spawn by using thermal stimulation and the combination of thermal and algal stimulation methods. The larvae obtained from induced spawning were reared using different diets (mixed microalgae and mixed microalgae with artificial feeds) at different stocking densities (300, 600, and 1000 larvae/l). Thermal stimulation is the best method of inducing spawning to H. nobilis yielding up to 1,300,000 fertilized eggs. The highest survival rate (27.5%) of doliolaria larvae was achieved using a mixed microalgae diet. The highest survival rate of doliolaria larvae (41.5 %), growth, and development were in the stocking density of 600 larvae/l

    Crossover from First to Second-Order Transition in Frustrated Ising Antiferromagnetic Films

    Full text link
    In the bulk state, the Ising FCC antiferromagnet is fully frustrated and is known to have a very strong first-order transition. In this paper, we study the nature of this phase transition in the case of a thin film, as a function of the film thickness. Using Monte Carlo (MC) simulations, we show that the transition remains first order down to a thickness of four FCC cells. It becomes clearly second order at a thickness of two FCC cells, i.e. four atomic layers. It is also interesting to note that the presence of the surface reduces the ground state (GS) degeneracy found in the bulk. For the two-cell thickness, the surface magnetization is larger than the interior one. It undergoes a second-order phase transition at a temperature TCT_C while interior spins become disordered at a lower temperature TDT_D. This loss of order is characterized by a peak of the interior spins susceptibility and a peak of the specific heat which do not depend on the lattice size suggesting that either it is not a real transition or it is a Kosterlitz-Thouless nature. The surface transition, on the other hand, is shown to be of second order with critical exponents deviated from those of pure 2D Ising universality class. We also show results obtained from the Green's function method. Discussion is given.Comment: 20 pages, 14 figure

    Algorithmic Foundations of Inexact Computing

    Full text link
    Inexact computing also referred to as approximate computing is a style of designing algorithms and computing systems wherein the accuracy of correctness of algorithms executing on them is deliberately traded for significant resource savings. Significant progress has been reported in this regard both in terms of hardware as well as software or custom algorithms that exploited this approach resulting in some loss in solution quality (accuracy) while garnering disproportionately high savings. However, these approaches tended to be ad-hoc and were tied to specific algorithms and technologies. Consequently, a principled approach to designing and analyzing algorithms was lacking. In this paper, we provide a novel model which allows us to characterize the behavior of algorithms designed to be inexact, as well as characterize opportunities and benefits that this approach offers. Our methods therefore are amenable to standard asymptotic analysis and provides a clean unified abstraction through which an algorithm's design and analysis can be conducted. With this as a backdrop, we show that inexactness can be significantly beneficial for some fundamental problems in that the quality of a solution can be exponentially better if one exploits inexactness when compared to approaches that are agnostic and are unable to exploit this approach. We show that such gains are possible in the context of evaluating Boolean functions rooted in the theory of Boolean functions and their spectra, PAC learning, and sorting. Formally, this is accomplished by introducing the twin concepts of inexactness aware and inexactness oblivious approaches to designing algorithms and the exponential gains are shown in the context of taking the ratio of the quality of the solution using the "aware" approach to the "oblivious" approach

    Cosmo MSW effect for mass varying neutrinos

    Full text link
    We consider neutrinos with varying masses which arise in scenarios relating neutrino masses to the dark energy density in the universe. We point out that the neutrino mass variation can lead to level crossing and thus a cosmo MSW effect, having dramatic consequences for the flavor ratio of astrophysical neutrinos.Comment: 8 pages, 1 figure, more detailed discussions, version to be published by Mod. Phys. Lett.

    ONE STEP SYNTHESIS OF WATER-DISPERSIBLE CoFe2O4 MAGNETIC NANOPARTICLES USING TRIETHYLENETETRAMINE AS SOLVENT AND STABILISING LIGAND

    Get PDF
    Magnetic CoFe2O4 nanoparticles were synthesised by one step synthetic method through thermal decomposition of Co and Fe precursors in triethylenetetramine solvent at high temperature. The advantage of this method is the ability to make monodisperse nanoparticles with high water-dispersibility and stability. The particle size can be tuned in the range of 7-11.3 nm by varying synthetic conditions. The obtained particles with small DLS size (less than 21 nm) are ready to disperse and stable in aqueous solution for weeks without any surface modification
    corecore