22 research outputs found
A 6% measurement of the Hubble parameter at z~0.45 : direct evidence of the epoch of cosmic re-acceleration
MM, LP and AC acknowledge financial contributions by grants ASI/INAF I/023/12/0 and PRIN MIUR 2010-2011 "The dark Universe and the cosmic evolution of baryons: from current surveys to Euclid". RJ and LV thank the Royal Society for financial support and the ICIC at Imperial College for hospitality while this work was being completed. LV is supported by the European Research Council under the European Community's Seventh Framework Programme FP7-IDEAS-Phys.LSS 240117. Funding for this work was partially provided by the Spanish MINECO under projects AYA2014-58747-P and MDM-2014-0369 of ICCUB (Unidad de Excelencia "Maria de Maeztu") Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science.Deriving the expansion history of the Universe is a major goal of modern cosmology. To date, the most accurate measurements have been obtained with Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO), providing evidence for the existence of a transition epoch at which the expansion rate changes from decelerated to accelerated. However, these results have been obtained within the framework of specific cosmological models that must be implicitly or explicitly assumed in the measurement. It is therefore crucial to obtain measurements of the accelerated expansion of the Universe independently of assumptions on cosmological models. Here we exploit the unprecedented statistics provided by the Baryon Oscillation Spectroscopic Survey (BOSS, [1-3]) Data Release 9 to provide new constraints on the Hubble parameter H(z) using the cosmic chronometers approach. We extract a sample of more than 130000 of the most massive and passively evolving galaxies, obtaining five new cosmology-independent H(z) measurements in the redshift range 0.3 < z < 0.5, with an accuracy of ~11–16% incorporating both statistical and systematic errors. Once combined, these measurements yield a 6% accuracy constraint of H(z = 0.4293) = 91.8 ± 5.3 km/s/Mpc. The new data are crucial to provide the first cosmology-independent determination of the transition redshift at high statistical significance, measuring zt = 0.4 ± 0.1, and to significantly disfavor the null hypothesis of no transition between decelerated and accelerated expansion at 99.9% confidence level. This analysis highlights the wide potential of the cosmic chronometers approach: it permits to derive constraints on the expansion history of the Universe with results competitive with standard probes, and most importantly, being the estimates independent of the cosmological model, it can constrain cosmologies beyond—and including—the ΛCDM model.PostprintPeer reviewe
Astronomical Distance Determination in the Space Age: Secondary Distance Indicators
The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
Methanol Masers and Massive Star Formation
Original paper can be found at: http://www.astrosociety.org/pubs/cs/286.html--Copyright Astronomical Society of the PacificStarting from the Onsala Methanol Maser Blind Survey of the Galactic Plane, stressing the recent results from the follow-up observations of newly detected sources and making some statistical considerationa, we try to make conclusions about the link between massive star formation and the presence of mathanol masers
Orion Source I 3mm SiO maser emission
Item does not contain fulltextReduced spectral cube of the SiO v=1, J=2-1 maser transition near Orion Source I observed on Jan 24, 2011, in FITS format (with velocity as primary axis). VLBA project code BG205. (2 data files)