14 research outputs found
Alfredson versus Silbernagel exercise therapy in chronic midportion Achilles tendinopathy : Study protocol for a randomized controlled trial
Background: Midportion Achilles tendinopathy (AT) is a common overuse injury, usually requiring several months of rehabilitation. Exercise therapy of the ankle plantar flexors (i.e. tendon loading) is considered crucial during conservative rehabilitation. Alfredson's isolated eccentric and Silbernagel's combined concentric-eccentric exercise programs have both shown beneficial results, but it is unknown whether any of these programs is superior for use in clinical practice. Therefore, the primary objective of this study is to compare the effectiveness of both programs on clinical symptoms. Secondary objectives are to compare the effectiveness of both programs on quality of life and functional outcome measures, to investigate the prognostic value of baseline characteristics, to investigate differences in cost-effectiveness. Methods/Design: Eighty-six recreational athletes (21-60 years of age) with unilateral chronic midportion AT (i.e. ≥ 3 months) will be included in this multicenter assessor blinded randomized controlled trial. They will be randomly allocated to either a group performing the Alfredson isolated eccentric training program (n = 43), or a group performing the Silbernagel combined concentric-eccentric program (n = 43). In the Alfredson group, participants will perform eccentric heel-drops on their injured side, twice daily for 12 weeks, whereas in the Silbernagel group, participants perform various concentric-eccentric heel-raise exercises, once daily for 12 weeks. Primary outcome measure will be the Victorian Institute of Sport Assessment - Achilles (VISA-A) questionnaire. Secondary outcomes will be a visual analogue scale (VAS) for pain during daily activities and sports, duration of morning stiffness, global perceived effect, the 12-item Short Form Health Survey and the Euroqol instrument, and functional performance measured with the heel-raise test and the countermovement jump. Additionally, alongside the RCT, a cost-effectiveness analysis will be performed. Assessments will be performed at baseline and after 12, 26, and 52 weeks. Discussion: This study is the first to directly compare the Alfredson and the Silbernagel exercise program in a randomized trial. The results can further enlarge the evidence base for choosing the most appropriate exercise program for patients with midportion AT. Trial registration: Dutch Trial register: NTR5638. Date of registration: 7 January 2016
E-coaching : New future for cardiac rehabilitation? A systematic review
Objective: To provide an evidence-based overview of the effectiveness of e-coaching as a cardiac rehabilitation program (CRP). Methods: Pubmed, Embase, PEDro and CINAHL were searched to identify relevant RCTs. The e-coaching programs were divided into basic or complex depending on their content. Two reviewers independently assessed the methodological quality and extracted the data. A best-evidence synthesis was used to summarize the results. Results: 19 RCTs were included. Detailed descriptions of the e-coaching programs were lacking. Complex e-coaching was more effective than usual-care for physical capacity (moderate evidence for short-, and mid-term; strong evidence for long-term), for clinical status (limited evidence for short- and mid-term; moderate evidence for the long-term), and for psychosocial health (moderate evidence for short-term; strong evidence for mid-, and long-term). For basic e-coaching only limited or no evidence for effectiveness was found. Conclusion: Promising results were found for the effectiveness of complex e-coaching as a CRP to improve a patients' physical capacity, clinical status and psychosocial health. Practice implications: The content of the e-coaching programs were not clearly described. This makes it difficult to identify which components of e-coaching are most effective and should be further developed to deliver the most optimal care for cardiac rehabilitation patients
E-coaching : New future for cardiac rehabilitation? A systematic review
Objective: To provide an evidence-based overview of the effectiveness of e-coaching as a cardiac rehabilitation program (CRP). Methods: Pubmed, Embase, PEDro and CINAHL were searched to identify relevant RCTs. The e-coaching programs were divided into basic or complex depending on their content. Two reviewers independently assessed the methodological quality and extracted the data. A best-evidence synthesis was used to summarize the results. Results: 19 RCTs were included. Detailed descriptions of the e-coaching programs were lacking. Complex e-coaching was more effective than usual-care for physical capacity (moderate evidence for short-, and mid-term; strong evidence for long-term), for clinical status (limited evidence for short- and mid-term; moderate evidence for the long-term), and for psychosocial health (moderate evidence for short-term; strong evidence for mid-, and long-term). For basic e-coaching only limited or no evidence for effectiveness was found. Conclusion: Promising results were found for the effectiveness of complex e-coaching as a CRP to improve a patients' physical capacity, clinical status and psychosocial health. Practice implications: The content of the e-coaching programs were not clearly described. This makes it difficult to identify which components of e-coaching are most effective and should be further developed to deliver the most optimal care for cardiac rehabilitation patients
Return to play after hamstring injuries in football (soccer) : A worldwide Delphi procedure regarding definition, medical criteria and decision-making
There are three major questions about return to play (RTP) after hamstring injuries: How should RTP be defined? Which medical criteria should support the RTP decision? And who should make the RTP decision? The study aimed to provide a clear RTP definition and medical criteria for RTP and to clarify RTP consultation and responsibilities after hamstring injury. The study used the Delphi procedure. The results of a systematic review were used as a starting point for the Delphi procedure. Fifty-eight experts in the field of hamstring injury management selected by 28 FIFA Medical Centres of Excellence worldwide participated. Each Delphi round consisted of a questionnaire, an analysis and an anonymised feedback report. After four Delphi rounds, with more than 83% response for each round, consensus was achieved that RTP should be defined as 'the moment a player has received criteria-based medical clearance and is mentally ready for full availability for match selection and/or full training'. The experts reached consensus on the following criteria to support the RTP decision: medical staff clearance, absence of pain on palpation, absence of pain during strength and flexibility testing, absence of pain during/after functional testing, similar hamstring flexibility, performance on field testing, and psychological readiness. It was also agreed that RTP decisions should be based on shared decision-making, primarily via consultation with the athlete, sports physician, physiotherapist, fitness trainer and team coach. The consensus regarding aspects of RTP should provide clarity and facilitate the assessment of when RTP is appropriate after hamstring injury, so as to avoid or reduce the risk of injury recurrence because of a premature RTP
The effects of lower leg compression garments on lower extremity sports injuries, subjective fatigue and biomechanical variables: a systematic review with meta-analysis
International Journal of Exercise Science 17(6): 445-467, 2024. The objective of this study was to systematically review the literature on the effect of CGs versus non-CGs (such as regular socks) or versus placebo garments on 1) the incidence of lower extremity sports injuries and 2) subjective ratings of fatigue and biomechanical variables in athletes at participating in any sport that required any level of running performance, given that fatigue-related biomechanical alterations may increase the risk of sports injuries. This study was a systematic review with meta-analyses. PubMed, Embase, CINAHL, Cochrane, PEDro, and Scopus were searched for eligible studies until 7 July 2021. Two reviewers independently assessed the risk of bias using the Cochrane Collaboration’s tool for risk of bias. Meta-analyses were performed using a random-effects model. The Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence for all outcome measures. Twenty-three studies, all with a high risk of bias, were included. Nineteen studies were used in the meta-analyses. No studies focused on the effect of CGs on the incidence of lower extremity sports injuries in athletes. Seventeen studies investigated the effect of CGs on subjective ratings of fatigue, but meta-analysis showed no difference in effectiveness between CGs versus non-CGs (such as regular socks) and versus placebo CGs (low certainty evidence). Because of heterogeneity, pooling of the results was not possible for the biomechanical variables. Nonetheless, low certainty evidence showed no effect of CGs. We identified no evidence for a beneficial or detrimental effect of lower leg CGs on the occurrence of lower extremity sports injuries, subjective ratings of fatigue, or biomechanical variables in athletes at any level of running performance. Based on the variable use of running tests, definitions used for biomechanical variables, and reporting of CG characteristics and more standardized reporting is recommended for future studies evaluating CGs
Return to play after hamstring injuries in football (soccer) : A worldwide Delphi procedure regarding definition, medical criteria and decision-making
There are three major questions about return to play (RTP) after hamstring injuries: How should RTP be defined? Which medical criteria should support the RTP decision? And who should make the RTP decision? The study aimed to provide a clear RTP definition and medical criteria for RTP and to clarify RTP consultation and responsibilities after hamstring injury. The study used the Delphi procedure. The results of a systematic review were used as a starting point for the Delphi procedure. Fifty-eight experts in the field of hamstring injury management selected by 28 FIFA Medical Centres of Excellence worldwide participated. Each Delphi round consisted of a questionnaire, an analysis and an anonymised feedback report. After four Delphi rounds, with more than 83% response for each round, consensus was achieved that RTP should be defined as 'the moment a player has received criteria-based medical clearance and is mentally ready for full availability for match selection and/or full training'. The experts reached consensus on the following criteria to support the RTP decision: medical staff clearance, absence of pain on palpation, absence of pain during strength and flexibility testing, absence of pain during/after functional testing, similar hamstring flexibility, performance on field testing, and psychological readiness. It was also agreed that RTP decisions should be based on shared decision-making, primarily via consultation with the athlete, sports physician, physiotherapist, fitness trainer and team coach. The consensus regarding aspects of RTP should provide clarity and facilitate the assessment of when RTP is appropriate after hamstring injury, so as to avoid or reduce the risk of injury recurrence because of a premature RTP
Return to Sport in Athletes with Midportion Achilles Tendinopathy : A Qualitative Systematic Review Regarding Definitions and Criteria
Background: Midportion Achilles tendinopathy (AT) can cause long-term absence from sports participation, and shows high recurrence rates. It is important that the decision to return to sport (RTS) is made carefully, based on sharply delimited criteria. Lack of a well-defined definition and criteria hampers the decision to RTS among athletes with AT, and impedes comparison of RTS rates between different studies. Objective: The aim of this study was to systematically review the literature for definitions of, and criteria for, RTS in AT research. Study Design: Qualitative systematic review. Methods: The PubMed, EMBASE, Cochrane, CINAHL, PEDro, and Scopus electronic databases were searched for articles that reported on the effect of a physiotherapeutic intervention for midportion AT. Article selection was independently performed by two researchers. Qualitative content analysis was used to analyze the included studies and extract definitions of, and criteria for, RTS. Results: Thirty-five studies were included in the content analysis, showing large variety in both the definitions and criteria. Thirty-two studies reported a definition of RTS, but only 19 studies described the criteria for RTS. The content analysis revealed that ‘reaching pre-injury activity/sports level, with the ability to perform training and matches without limitations’, ‘absence of pain’, and ‘recovery’ were the main content categories used to define RTS. Regarding the criteria for RTS, eight different content categories were defined: (1) ‘level of pain’; (2) ‘level of functional recovery’; (3) ‘recovery of muscle strength’; (4) ‘recovery of range of motion’; (5) ‘level of endurance of the involved limb’; (6) ‘medical advice’; (7) ‘psychosocial factors’; and (8) ‘anatomical/physiological properties of the musculotendinous complex’. Many criteria were not clearly operationalized and lacked specific information. Conclusions: This systematic review shows that RTS may be defined according to the pre-injury level of sports (including both training and matches), but also with terms related to the absence of pain and recovery. Multiple criteria for RTS were found, which were all related to level of pain, level of functional recovery, muscular strength, range of motion, endurance, medical advice, psychosocial factors, or anatomical/physiological properties of the Achilles tendon. For most of the criteria we identified, no clear operationalization was given, which limits their validity and practical usability. Further research on how RTS after midportion AT should be defined, and which criteria should be used, is warranted. PROSPERO Registration Number: CRD42017062518