1,091 research outputs found
Performance of injection-limited polymer light-emitting diodes
The electro-optical characteristics of a polymer light emitting diode (PLED) with a strongly reduced hole injection have been investigated. The device consists of a poly-p-phenylene vinylene semiconductor with a Ag hole injecting contact, which has an injection barrier of about 1 eV. It is observed that the light and current density of such an injection-limited PLED strongly exceed the expected device characteristics. Numerical calculations of the injection-limited PLED show that the enhanced performance can be explained by a very high electric field at the bole injecting contact, due to trapped electrons.</p
Electronic Structure of Lanthanum Hydrides with Switchable Optical Properties
Recent dramatic changes in the optical properties of LaH_{2+x} and YH_{2+x}
films discovered by Huiberts et al. suggest their electronic structure is
described best by a local model. Electron correlation is important in H^-
-centers and in explaining the transparent insulating behavior of LaH_3. The
metal-insulator transition at takes place in a band of highly
localized states centered on the -vacancies in the LaH_3 structure.Comment: plain tex, 3 figure
Optical transmission spectroscopy of switchable yttrium hydride films.
The optical transmission of the recently discovered switchable yttrium hydride films is determined spectroscopically as a function of hydrogen content. This is done during electrochemical loading of Pd-capped Y film electrodes, thereby continuously changing the hydrogen concentration. The effect of the Pd cap layer on the film transmission is determined from measurements on a series of films with varying Pd layer thickness. The results are in good agreement with transmission measurements of in situ gas phase loaded, uncapped Y films. Both data sets can be consistently described with simple optical decay lengths such as 277.8 nm for YH3−δ and 15.1 nm for Pd at ħω=1.96 eV. The hydrogen concentration dependence of the optical transmission is discussed and compared with previous optical measurements on bulk samples and band-structure calculations
Isotope effects in switchable metal-hydride mirrors
Measurements of optical reflectance, transmittance, and electrical resistivity on the switchable mirror systems YHx and YDx show that the absorption of hydrogen induces the same variations as that of deuterium. In both cases there is a weak transparency window for the metallic dihydride (dideuteride) phase and a yellowish transparency in the insulating trihydride (trideuteride) phase. The slightly higher electrical resistivity of the deuterides is related to the lower energy of their optical phonons. The absence of significant isotope effects in the optical properties of YHx(YDx) is at variance with Peierls-like theoretical models. It is, however, compatible with strong electron correlation model
Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry
The dielectric properties of alpha-MgH2 are investigated in the photon energy
range between 1 and 6.5 eV. For this purpose, a novel sample configuration and
experimental setup are developed that allow both optical transmission and
ellipsometric measurements of a transparent thin film in equilibrium with
hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator
with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about
80% over the whole visible spectrum. The dielectric function found in this work
confirms very recent band structure calculations using the GW approximation by
Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a
cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table
- …