122 research outputs found

    Ancient DNA Provides New Insights into the Evolutionary History of New Zealand's Extinct Giant Eagle

    Get PDF
    Prior to human settlement 700 years ago New Zealand had no terrestrial mammals—apart from three species of bats—instead, approximately 250 avian species dominated the ecosystem. At the top of the food chain was the extinct Haast's eagle, Harpagornis moorei. H. moorei (10–15 kg; 2–3 m wingspan) was 30%–40% heavier than the largest extant eagle (the harpy eagle, Harpia harpyja), and hunted moa up to 15 times its weight. In a dramatic example of morphological plasticity and rapid size increase, we show that the H. moorei was very closely related to one of the world's smallest extant eagles, which is one-tenth its mass. This spectacular evolutionary change illustrates the potential speed of size alteration within lineages of vertebrates, especially in island ecosystems

    Discovery of species-wide tool use in the Hawaiian crow

    Get PDF
    Funding from the Biotechnology and Biological Sciences Research Council, UK (BBSRC; grant BB/G023913/2 to C.R., and studentship to B.C.K.), the University of St Andrews (C.R.), JASSO (S.S.), and the Royal Society of London (M.B.M.). Funding for thecaptive ‘Alala propagation programme was provided by the U.S. Fish and Wildlife Service, Hawai‘i Division of Forestry and Wildlife, Moore Family Foundation, Marisla Foundation, several anonymous donors, and San Diego Zoo Global.Only a handful of bird species are known to use foraging tools in the wild1. Amongst them, the New Caledonian crow (Corvus moneduloides) stands out with its sophisticated tool-making skills2, 3. Despite considerable speculation, the evolutionary origins of this species’ remarkable tool behaviour remain largely unknown, not least because no naturally tool-using congeners have yet been identified that would enable informative comparisons4. Here we show that another tropical corvid, the ‘Alalā (C. hawaiiensis; Hawaiian crow), is a highly dexterous tool user. Although the ‘Alalā became extinct in the wild in the early 2000s, and currently survives only in captivity5, at least two lines of evidence suggest that tool use is part of the species’ natural behavioural repertoire: juveniles develop functional tool use without training, or social input from adults; and proficient tool use is a species-wide capacity. ‘Alalā and New Caledonian crows evolved in similar environments on remote tropical islands, yet are only distantly related6, suggesting that their technical abilities arose convergently. This supports the idea that avian foraging tool use is facilitated by ecological conditions typical of islands, such as reduced competition for embedded prey and low predation risk4, 7. Our discovery creates exciting opportunities for comparative research on multiple tool-using and non-tool-using corvid species. Such work will in turn pave the way for replicated cross-taxonomic comparisons with the primate lineage, enabling valuable insights into the evolutionary origins of tool-using behaviour.PostprintPeer reviewe

    Changing Selective Pressure during Antigenic Changes in Human Influenza H3

    Get PDF
    The rapid evolution of influenza viruses presents difficulties in maintaining the optimal efficiency of vaccines. Amino acid substitutions result in antigenic drift, a process whereby antisera raised in response to one virus have reduced effectiveness against future viruses. Interestingly, while amino acid substitutions occur at a relatively constant rate, the antigenic properties of H3 move in a discontinuous, step-wise manner. It is not clear why this punctuated evolution occurs, whether this represents simply the fact that some substitutions affect these properties more than others, or if this is indicative of a changing relationship between the virus and the host. In addition, the role of changing glycosylation of the haemagglutinin in these shifts in antigenic properties is unknown. We analysed the antigenic drift of HA1 from human influenza H3 using a model of sequence change that allows for variation in selective pressure at different locations in the sequence, as well as at different parts of the phylogenetic tree. We detect significant changes in selective pressure that occur preferentially during major changes in antigenic properties. Despite the large increase in glycosylation during the past 40 years, changes in glycosylation did not correlate either with changes in antigenic properties or with significantly more rapid changes in selective pressure. The locations that undergo changes in selective pressure are largely in places undergoing adaptive evolution, in antigenic locations, and in locations or near locations undergoing substitutions that characterise the change in antigenicity of the virus. Our results suggest that the relationship of the virus to the host changes with time, with the shifts in antigenic properties representing changes in this relationship. This suggests that the virus and host immune system are evolving different methods to counter each other. While we are able to characterise the rapid increase in glycosylation of the haemagglutinin during time in human influenza H3, an increase not present in influenza in birds, this increase seems unrelated to the observed changes in antigenic properties

    Mutation Rate Switch inside Eurasian Mitochondrial Haplogroups: Impact of Selection and Consequences for Dating Settlement in Europe

    Get PDF
    R-lineage mitochondrial DNA represents over 90% of the European population and is significantly present all around the planet (North Africa, Asia, Oceania, and America). This lineage played a major role in migration “out of Africa” and colonization in Europe. In order to determine an accurate dating of the R lineage and its sublineages, we analyzed 1173 individuals and complete mtDNA sequences from Mitomap. This analysis revealed a new coalescence age for R at 54.500 years, as well as several limitations of standard dating methods, likely to lead to false interpretations. These findings highlight the association of a striking under-accumulation of synonymous mutations, an over-accumulation of non-synonymous mutations, and the phenotypic effect on haplogroup J. Consequently, haplogroup J is apparently not a Neolithic group but an older haplogroup (Paleolithic) that was subjected to an underestimated selective force. These findings also indicated an under-accumulation of synonymous and non-synonymous mutations localized on coding and non-coding (HVS1) sequences for haplogroup R0, which contains the major haplogroups H and V. These new dates are likely to impact the present colonization model for Europe and confirm the late glacial resettlement scenario

    45S rDNA external transcribed spacer organization reveals new phylogenetic relationships in Avena genus

    Get PDF
    Research ArticleThe genus Avena comprises four distinct genomes organized in diploid (AA or CC), tetraploid (AABB or AACC) and hexaploid species (AACCDD), constituting an interesting model for phylogenetic analysis. The aim of this work was to characterize 45S rDNA intergenic spacer (IGS) variability in distinct species representative of Avena genome diversity±A. strigosa (AA), A. ventricosa (CvCv), A. eriantha (CpCp), A. barbata (AABB), A. murphyi (AACC), A. sativa (AACCDD) and A. sterilis (AACCDD) through the assessment of the 5' external transcribed spacer (5'-ETS), a promising IGS region for phylogenetic studies poorly studied in Avena genus. In this work, IGS length polymorphisms were detected mainly due to distinct 5'-ETS sequence types resulting from major differences in the number and organization of repeated motifs. Although species with A genome revealed a 5'-ETS organization (A-organization) similar to the one previously described in A. sativa, a distinct organization was unraveled in C genome diploid species (C-organization). Interestingly, such new organization presents a higher similarity with other Poaceae species than A-genome sequences, supporting the hypothesis of C-genome being the ancestral Avena genome. Additionally, polyploid species with both genomes mainly retain the A-genome 5'-ETS organization, confirming the preferential elimination of C-genome sequences in Avena polyploid species. Moreover, 5'-ETS sequences phylogenetic analysis consistently clustered the species studied according to ploidy and genomic constitution supporting the use of ribosomal genes to highlight Avena species evolutive pathways.info:eu-repo/semantics/publishedVersio

    Evolutionary Pathways of the Pandemic Influenza A (H1N1) 2009 in the UK

    Get PDF
    The emergence of the influenza (H1N1) 2009 virus provided a unique opportunity to study the evolution of a pandemic virus following its introduction into the human population. Virological and clinical surveillance in the UK were comprehensive during the first and second waves of the pandemic in 2009, with extensive laboratory confirmation of infection allowing a detailed sampling of representative circulating viruses. We sequenced the complete coding region of the haemagglutinin (HA) segment of 685 H1N1 pandemic viruses selected without bias during two waves of pandemic in the UK (April-December 2009). Phylogenetic analysis showed that although temporal accumulation of amino acid changes was observed in the HA sequences, the overall diversity was less than that typically seen for seasonal influenza A H1N1 or H3N2. There was co-circulation of multiple variants as characterised by signature amino acid changes in the HA. A specific substitution (S203T) became predominant both in UK and global isolates. No antigenic drift occurred during 2009 as viruses with greater than four-fold reduction in their haemagglutination inhibition (HI) titre (“low reactors”) were detected in a low proportion (3%) and occurred sporadically. Although some limited antigenic divergence in viruses with four-fold reduction in HI titre might be related to the presence of 203T, additional studies are needed to test this hypothesis

    Using Non-Homogeneous Models of Nucleotide Substitution to Identify Host Shift Events: Application to the Origin of the 1918 ‘Spanish’ Influenza Pandemic Virus

    Get PDF
    Nonhomogeneous Markov models of nucleotide substitution have received scant attention. Here we explore the possibility of using nonhomogeneous models to identify host shift nodes along phylogenetic trees of pathogens evolving in different hosts. It has been noticed that influenza viruses show marked differences in nucleotide composition in human and avian hosts. We take advantage of this fact to identify the host shift event that led to the 1918 ‘Spanish’ influenza. This disease killed over 50 million people worldwide, ranking it as the deadliest pandemic in recorded history. Our model suggests that the eight RNA segments which eventually became the 1918 viral genome were introduced into a mammalian host around 1882–1913. The viruses later diverged into the classical swine and human H1N1 influenza lineages around 1913–1915. The last common ancestor of human strains dates from February 1917 to April 1918. Because pigs are more readily infected with avian influenza viruses than humans, it would seem that they were the original recipient of the virus. This would suggest that the virus was introduced into humans sometime between 1913 and 1918

    The Phylogenetics and Ecology of the Orthopoxviruses Endemic to North America

    Get PDF
    The data presented herein support the North American orthopoxviruses (NA OPXV) in a sister relationship to all other currently described Orthopoxvirus (OPXV) species. This phylogenetic analysis reaffirms the identification of the NA OPXV as close relatives of “Old World” (Eurasian and African) OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. The natural reservoir host(s) for many of the described OPXV species remains unknown although a clear virus-host association exists between the genus OPXV and several mammalian taxa. The hypothesized host associations and the deep divergence of the OPXV/NA OPXV clades depicted in this study may reflect the divergence patterns of the mammalian faunas of the Old and New World and reflect a more ancient presence of OPXV on what are now the American continents. Genes from the central region of the poxvirus genome are generally more conserved than genes from either end of the linear genome due to functional constraints imposed on viral replication abilities. The relatively slower evolution of these genes may more accurately reflect the deeper history among the poxvirus group, allowing for robust placement of the NA OPXV within Chordopoxvirinae. Sequence data for nine genes were compiled from three NA OPXV strains plus an additional 50 genomes collected from Genbank. The current, gene sequence based phylogenetic analysis reaffirms the identification of the NA OPXV as the nearest relatives of “Old World” OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. Additionally, the substantial genetic distances that separate the currently described NA OPXV species indicate that it is likely that many more undescribed OPXV/NA OPXV species may be circulating among wild animals in North America

    Amazonian Amphibian Diversity Is Primarily Derived from Late Miocene Andean Lineages

    Get PDF
    The Neotropics contains half of remaining rainforests and Earth's largest reservoir of amphibian biodiversity. However, determinants of Neotropical biodiversity (i.e., vicariance, dispersals, extinctions, and radiations) earlier than the Quaternary are largely unstudied. Using a novel method of ancestral area reconstruction and relaxed Bayesian clock analyses, we reconstructed the biogeography of the poison frog clade (Dendrobatidae). We rejected an Amazonian center-of-origin in favor of a complex connectivity model expanding over the Neotropics. We inferred 14 dispersals into and 18 out of Amazonia to adjacent regions; the Andes were the major source of dispersals into Amazonia. We found three episodes of lineage dispersal with two interleaved periods of vicariant events between South and Central America. During the late Miocene, Amazonian, and Central American-Chocoan lineages significantly increased their diversity compared to the Andean and Guianan-Venezuelan-Brazilian Shield counterparts. Significant percentage of dendrobatid diversity in Amazonia and Chocó resulted from repeated immigrations, with radiations at <10.0 million years ago (MYA), rather than in situ diversification. In contrast, the Andes, Venezuelan Highlands, and Guiana Shield have undergone extended in situ diversification at near constant rate since the Oligocene. The effects of Miocene paleogeographic events on Neotropical diversification dynamics provided the framework under which Quaternary patterns of endemism evolved

    Insights into the Molecular Evolution of the PDZ/LIM Family and Identification of a Novel Conserved Protein Motif

    Get PDF
    The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36), Mystique, Enigma (LMP-1), Enigma homologue (ENH), ZASP (Cypher, Oracle), LMO7 and the two LIM domain kinases (LIMK1 and LIMK2). As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call ‘ALP-like motif’ (AM). This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family
    corecore