7,850 research outputs found
Galaxy Distances in the Nearby Universe: Corrections For Peculiar Motions
By correcting the redshift--dependent distances for peculiar motions through
a number of peculiar velocity field models, we recover the true distances of a
wide, all-sky sample of nearby galaxies (~ 6400 galaxies with velocities
cz<5500 km/s), which is complete up to the blue magnitude B=14 mag. Relying on
catalogs of galaxy groups, we treat ~2700 objects as members of galaxy groups
and the remaining objects as field galaxies.
We model the peculiar velocity field using: i) a cluster dipole
reconstruction scheme; ii) a multi--attractor model fitted to the Mark II and
Mark III catalogs of galaxy peculiar velocities. According to Mark III data the
Great Attractor has a smaller influence on local dynamics than previously
believed, whereas the Perseus-Pisces and Shapley superclusters acquire a
specific dynamical role. Remarkably, the Shapley structure, which is found to
account for nearly half the peculiar motion of the Local Group, is placed by
Mark III data closer to the zone of avoidance with respect to its optical
position.
Our multi--attractor model based on Mark III data favors a cosmological
density parameter Omega ~ 0.5 (irrespective of a biasing factor of order
unity). Differences among distance estimates are less pronounced in the ~ 2000
- 4000 km/s distance range than at larger or smaller distances. In the last
regions these differences have a serious impact on the 3D maps of the galaxy
distribution and on the local galaxy density --- on small scales.Comment: 24 pages including (9 eps figures and 7 tables). Figures 1,2,3,4 are
available only upon request. Accepted by Ap
Prospects for the measurement of the electron electric dipole moment using YbF
We discuss an experiment underway at Imperial College London to measure the
permanent electric dipole moment (EDM) of the electron using a molecular beam
of YbF. We describe the measurement method, which uses a combination of laser
and radiofrequency resonance techniques to detect the spin precession of the
YbF molecule in a strong electric field. We pay particular attention to the
analysis scheme and explore some of the possible systematic effects which might
mimic the EDM signal. Finally, we describe technical improvements which should
increase the sensitivity by more than an order of magnitude over the current
experimental limit.Comment: 6 pages, 2 figure
Young mothers in care, contributing to the contemporary debate
Teenage pregnancy has become a broad issue in contemporary society and has become a focus for concern for young women in or exiting the care system. The article draws on interviews with twenty-four young mothers in, or on the fringes of the care system. It highlights the thoughts and feelings of these young women, specifically looking at the relationships that they have with their mothers, the father of their baby and their social workers. The mothers' sources of support and their perceptions of these are discussed. Implications for practice for working with this discrete group of young mothers are explored
Giant dispersion of critical currents in superconductor with fractal clusters of a normal phase
The influence of fractal clusters of a normal phase on the dynamics of a
magnetic flux trapped in a percolative superconductor is considered. The
critical current distribution and the current-voltage characteristics of
fractal superconducting structures in the resistive state are obtained for an
arbitrary fractal dimension of the cluster boundaries. The range of fractal
dimensions, where the dispersion of critical currents becomes infinite, is
found. It is revealed that the fractality of clusters depresses of the electric
field caused by the magnetic flux motion thus increasing the critical current
value. It is expected that the maximum current-carrying capability of a
superconductor can be achieved in the region of giant dispersion of critical
currents.Comment: 7 pages with 3 figure
Franck-Condon Factors and Radiative Lifetime of the A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} Transition of Ytterbium Monoflouride, YbF
The fluorescence spectrum resulting from laser excitation of the
A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} (0,0) band of ytterbium monofluoride, YbF, has
been recorded and analyzed to determine the Franck-Condon factors. The measured
values are compared with those predicted from Rydberg-Klein-Rees (RKR)
potential energy curves. From the fluorescence decay curve the radiative
lifetime of the A^{2}\Pi_{1/2} state is measured to be 28\pm2 ns, and the
corresponding transition dipole moment is 4.39\pm0.16 D. The implications for
laser cooling YbF are discussed.Comment: 5 pages, 5 figure
First limits on the 3-200 keV X-ray spectrum of the quiet Sun using RHESSI
We present the first results using the Reuven Ramaty High-Energy Solar
Spectroscopic Imager, RHESSI, to observe solar X-ray emission not associated
with active regions, sunspots or flares (the quiet Sun). Using a newly
developed chopping technique (fan-beam modulation) during seven periods of
offpointing between June 2005 to October 2006, we obtained upper limits over
3-200 keV for the quietest times when the GOES12 1-8A flux fell below
Wm. These values are smaller than previous limits in the 17-120 keV
range and extend them to both lower and higher energies. The limit in 3-6 keV
is consistent with a coronal temperature MK. For quiet Sun periods
when the GOES12 1-8A background flux was between Wm and
Wm, the RHESSI 3-6 keV flux correlates to this as a power-law,
with an index of . The power-law correlation for microflares has
a steeper index of . We also discuss the possibility of
observing quiet Sun X-rays due to solar axions and use the RHESSI quiet Sun
limits to estimate the axion-to-photon coupling constant for two different
axion emission scenarios.Comment: 4 pages, 3 figures, Accepted by ApJ letter
Asteroid 1986 DA: Radar evidence for a metallic composition
Radar observations of the near-Earth asteroid 1986 DA were carried out at the Arecibo Observatory in April 1986, two months after its discovery. Radar results are consistent with the hypothesis that 1986 HA is a piece of NiFe metal derived from the interior of a much larger object that melted, differentiated, cooled and subsequently was disrupted in a catastrophic collision. This 2-km asteroid might be (or have been part of) the parent body of some iron meteorites. Or 1986 DA might share the parentage and/or part of the dynamical history of some meteorites without ever having contributed any of its own ejecta to our meteorite sample. Analysis of the samples returned from 1986 DA might ultimately involve economic considerations. Meteoritic metal is mostly iron with about 8 percent nickel, but also contains substantial concentrations of precious and strategic metals, including approx. 1 ppm of gold and approx. 10 ppm of platinum group elements. If these abundances apply to 1986 DA, it contains some 10(exp 16) g of iron, 10 (exp 15) g of nickel, 10(exp 11) g of platinum group metals, and 10(exp 10) g of gold
Redshift-distance Survey of Early-type Galaxies: The D_n-sigma Relation
In this paper R-band photometric and velocity dispersion measurements for a
sample of 452 elliptical and S0 galaxies in 28 clusters are used to construct a
template D_n-sigma relation. This template relation is constructed by combining
the data from the 28 clusters, under the assumption that galaxies in different
clusters have similar properties. The photometric and spectroscopic data used
consist of new as well as published measurements, converted to a common system,
as presented in a accompanying paper. The resulting direct relation, corrected
for incompleteness bias, is log{D_n} =1.203 log{sigma} + 1.406; the zero-point
has been defined by requiring distant clusters to be at rest relative to the
CMB. This zero-point is consistent with the value obtained by using the
distance to Virgo as determined by the Cepheid period-luminosity relation. This
new D_n-sigma relation leads to a peculiar velocity of -72 (\pm 189) km/s for
the Coma cluster. The scatter in the distance relation corresponds to a
distance error of about 20%, comparable to the values obtained for the
Fundamental Plane relation. Correlations between the scatter and residuals of
the D_n-sigma relation with other parameters that characterize the cluster
and/or the galaxy stellar population are also analyzed. The direct and inverse
relations presented here have been used in recent studies of the peculiar
velocity field mapped by the ENEAR all-sky sample.Comment: 46 pages, 20 figures, and 7 tables. To appear in AJ, vol. 123, no. 5,
May 200
First cosmic shear results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey
We present the first measurements of the weak gravitational lensing signal
induced by the large scale mass distribution from data obtained as part of the
ongoing Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). The data used in
this analysis are from the Wide Synoptic Survey, which aims to image ~170
square degree in five filters. We have analysed ~22 deg2 (31 pointings) of i'
data spread over two of the three survey fields. These data are of excellent
quality and the results bode well for the remainder of the survey: we do not
detect a significant `B'-mode, suggesting that residual systematics are
negligible at the current level of accuracy. Assuming a Cold Dark Matter model
and marginalising over the Hubble parameter h=[0.6,0.8], the source redshift
distribution and systematics, we constrain sigma_8, the amplitude of the matter
power spectrum. At a fiducial matter density Omega_m=0.3 we find
sigma_8=0.85+-0.06. This estimate is in excellent agreement with previous
studies. Combination of our results with those from the Deep component of the
CFHTLS enables us to place a constraint on a constant equation of state for the
dark energy, based on cosmic shear data alone. We find that w_0<-0.8 at 68%
confidence.Comment: Submitted to Ap
The Time Machine: A Simulation Approach for Stochastic Trees
In the following paper we consider a simulation technique for stochastic
trees. One of the most important areas in computational genetics is the
calculation and subsequent maximization of the likelihood function associated
to such models. This typically consists of using importance sampling (IS) and
sequential Monte Carlo (SMC) techniques. The approach proceeds by simulating
the tree, backward in time from observed data, to a most recent common ancestor
(MRCA). However, in many cases, the computational time and variance of
estimators are often too high to make standard approaches useful. In this paper
we propose to stop the simulation, subsequently yielding biased estimates of
the likelihood surface. The bias is investigated from a theoretical point of
view. Results from simulation studies are also given to investigate the balance
between loss of accuracy, saving in computing time and variance reduction.Comment: 22 Pages, 5 Figure
- âŠ