78 research outputs found
Gravitational losses for the binary systems induced by the next-to-leading spin-orbit coupling effects
The orbital energy and momentum of the compact binary systems will loss due
to gravitational radiation. Based on the mass and mass-current multipole
moments of the binary system with the spin vector defined by Boh\'{e} et al.
[Class. Quantum Grav. 30, 075017 (2013)], we calculate the loss rates of
energy, angular and linear momentum induced by the next-to-leading spin-orbit
effects. For the case of circular orbit, the formulations for these losses are
given in terms of the orbital frequency.Comment: 18 page
Related consistent lures increase the judgment of multiplication facts: Evidence using event-related potential technique
Simple multiplication errors are primarily shown in whether the lures are related to the operands (relatedness, such as 3 × 4 = 15 vs. 17) or whether the same decades are shared with the correct answers (consistency, such as 3 × 4 = 16 vs. 21). This study used a delayed verification paradigm and event-related potential technique to investigate the effects of relatedness and consistency in simple multiplication mental arithmetic for 30 college students in an experiment of presenting probes in auditory channels. We found that, compared to the related inconsistent lures, the related consistent lures showed significantly faster reaction time and induced significantly large amplitudes of N400 and late positive component. The findings suggest that related consistent lures are less affected by the activation diffusion of the arithmetic problem, and the credibility of being perceived as the correct answer is less; the lures related to operands and sharing the same decades with the accurate results can promote the judgment of multiplication mental arithmetic, and the results support the Interacting Neighbors Model
Recommended from our members
Biodegradable, flexible silicon nanomembrane-based NO x gas sensor system with record-high performance for transient environmental monitors and medical implants
Abstract: A novel transient electronics technology that is capable of completely dissolving or decomposing in certain conditions after a period of operation offers unprecedented opportunities for medical implants, environmental sensors, and other applications. Here, we describe a biodegradable, flexible silicon-based electronic system that detects NO species with a record-breaking sensitivity of 136 Rs (5 ppm, NO2) and 100-fold selectivity for NO species over other substances with a fast response (~30 s) and recovery (~60 s). The exceptional features primarily depend on not only materials, dimensions, and design layouts but also temperatures and electrical operations. Large-scale sensor arrays in a mechanically pliable configuration exhibit negligible deterioration in performance under various modes of applied loads, consistent with mechanics modeling. In vitro evaluations demonstrate the capability and stability of integrated NOx devices in severe wet environments for biomedical applications
Meta-analysis of ridge-furrow cultivation effects on maize production and water use efficiency
Ridge-furrow cultivation (RF) is a popular dryland agricultural technique in China, but its effects on maize yield, total water consumption during crop growing stage (ET), and water use efficiency (WUE) have not been systematically analyzed. Here we conducted a meta-analysis of the RF effects on maize yield, ET and WUE based on the data collected from peer-reviewed literature. Yield, ET and WUE varied with climate, soil and mulching management. Averaged across all the geographic locations, RF increased the yield and WUE of maize by 47 % and 39 %, respectively, but no effects on ET. An increase in the yield and WUE occurred under RF in regions regardless of the mean growing season air temperature (MT) or a mean precipitation during the growing season (MP), although there was a trend that RF is more beneficial under low MP. RF also decreased ET in regions with MT>12 °C. RF increased the yield and WUE in regions with medium or fine soil texture. RF increased the yield, ET, and WUE in regions with low soil bulk density (BD) (≤1.3 g cm−3). But in areas where BD is larger than 1.3 g cm−3, RF only increased the yield and WUE. RF increased the yield and WUE with or without mulching, but decreased ET when no mulching was used. Together, optimizing RF effects on the yield, ET and WUE in maize was largely dependent on environmental conditions and management practices
Crop yield and soil organic carbon under ridge–furrow cultivation in China: A meta-analysis
Ridge–furrow cultivation (RF) is a popular emerging technique that can increase crop productivity in dry areas. However, the efficacy of RF on crop yield and soil organic carbon (SOC) remains uncertain under different climate and management conditions. Here, we compiled data from 48 publications to evaluate the response of yield and SOC to RF in China. Overall, our meta-analysis showed that RF increased yield by 30.2%, but it had no effects on SOC. When differentiated based on different categories, yield and SOC varied by crop species, climate, soil textures, mulching management, and ridge–furrow patterns. RF increased the yield of wheat, maize, soybean, rape, linseed, potato, and SOC under soybean cultivation. Yield increase with RF was also consistent across temperature and precipitation. Yield increase was observed in all the soil textures. There were no RF effects on SOC under different soil textures. RF enhanced yields under no mulching, straw mulching and plastic film mulching, but increased SOC only in combination with straw mulching. A higher yield increase was observed under alternating small and large ridges (ASLR) than alternating ridges and furrows (AR). RF decreased SOC by 11.7% under AR, but had no effects on SOC under ASLR. Together, ASLR with straw mulching could increase yield and SOC in coarse soil texture regions with annual mean temperature >10°C and annual mean precipitation > 400 mm. This study showed the importance of considering local environmental conditions with management practices in identifying appropriate RF practices for improving crop productivity and soil carbon sequestration
Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst
The recently discovered neutron star transient Swift J0243.6+6124 has been
monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT).
Based on the obtained data, we investigate the broadband spectrum of the source
throughout the outburst. We estimate the broadband flux of the source and
search for possible cyclotron line in the broadband spectrum. No evidence of
line-like features is, however, found up to . In the absence of
any cyclotron line in its energy spectrum, we estimate the magnetic field of
the source based on the observed spin evolution of the neutron star by applying
two accretion torque models. In both cases, we get consistent results with
, and peak luminosity of which makes the source the first Galactic ultraluminous
X-ray source hosting a neutron star.Comment: publishe
Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite
As China's first X-ray astronomical satellite, the Hard X-ray Modulation
Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15,
2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy
satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was
designed to perform pointing, scanning and gamma-ray burst (GRB) observations
and, based on the Direct Demodulation Method (DDM), the image of the scanned
sky region can be reconstructed. Here we give an overview of the mission and
its progresses, including payload, core sciences, ground calibration/facility,
ground segment, data archive, software, in-orbit performance, calibration,
background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech.
Astron. arXiv admin note: text overlap with arXiv:1910.0443
- …