84 research outputs found
An NLoS-based Enhanced Sensing Method for MmWave Communication System
The millimeter-wave (mmWave)-based Wi-Fi sensing technology has recently
attracted extensive attention since it provides a possibility to realize higher
sensing accuracy. However, current works mainly concentrate on sensing
scenarios where the line-of-sight (LoS) path exists, which significantly limits
their applications. To address the problem, we propose an enhanced mmWave
sensing algorithm in the 3D non-line-of-sight environment (mm3NLoS), aiming to
sense the direction and distance of the target when the LoS path is weak or
blocked. Specifically, we first adopt the directional beam to estimate the
azimuth/elevation angle of arrival (AoA) and angle of departure (AoD) of the
reflection path. Then, the distance of the related path is measured by the fine
timing measurement protocol. Finally, we transform the AoA and AoD of the
multiple non-line-of-sight (NLoS) paths into the direction vector and then
obtain the information of targets based on the geometric relationship. The
simulation results demonstrate that mm3NLoS can achieve a centimeter-level
error with a 2m spacing. Compared to the prior work, it can significantly
reduce the performance degradation under the NLoS condition
Permutohedral complexes and rational curves with cyclic action
We define a moduli space of rational curves with finite-order automorphism
and weighted orbits, and we prove that the combinatorics of its boundary strata
are encoded by a particular polytopal complex that also captures the algebraic
structure of a complex reflection group acting on the moduli space. This
generalizes the situation for Losev-Manin's moduli space of curves (whose
boundary strata are encoded by the permutohedron and related to the symmetric
group) as well as the situation for Batyrev-Blume's moduli space of curves with
involution, and it extends that work beyond the toric context.Comment: 47 pages, 12 figure
E2F1 Suppresses Oxidative Metabolism and Endothelial Differentiation of Bone Marrow Progenitor Cells
RATIONALE:
The majority of current cardiovascular cell therapy trials use bone marrow progenitor cells (BM PCs) and achieve only modest efficacy; the limited potential of these cells to differentiate into endothelial-lineage cells is one of the major barriers to the success of this promising therapy. We have previously reported that the E2F transcription factor 1 (E2F1) is a repressor of revascularization after ischemic injury.
OBJECTIVE:
We sought to define the role of E2F1 in the regulation of BM PC function.
METHODS AND RESULTS:
Ablation of E2F1 (E2F1 deficient) in mouse BM PCs increases oxidative metabolism and reduces lactate production, resulting in enhanced endothelial differentiation. The metabolic switch in E2F1-deficient BM PCs is mediated by a reduction in the expression of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase kinase 2; overexpression of pyruvate dehydrogenase kinase 4 reverses the enhancement of oxidative metabolism and endothelial differentiation. Deletion of E2F1 in the BM increases the amount of PC-derived endothelial cells in the ischemic myocardium, enhances vascular growth, reduces infarct size, and improves cardiac function after myocardial infarction.
CONCLUSION:
Our results suggest a novel mechanism by which E2F1 mediates the metabolic control of BM PC differentiation, and strategies that inhibit E2F1 or enhance oxidative metabolism in BM PCs may improve the effectiveness of cell therapy
Efficacy and safety of pharmacotherapy for refractory or unexplained chronic cough: a systematic review and network meta-analysis
Background: Refractory chronic cough (RCC) has a significant impact on patient's health-related quality of life and represents a challenge in clinical management. However, the optimal treatment for RCC remains controversial. This study aimed to investigate and compare the efficacy and safety of the current pharmacological therapeutic options for RCC. Methods: A systematic review was performed by searching PubMed, Web of Science, Embase, and Ovid databases from January 1, 2008 to March 1, 2023. All randomised control trials (RCTs) reporting outcomes of efficacy or/and safety were included in the Bayesian network meta-analysis. Here, we compared the effects on Leicester Cough Questionnaire (LCQ), Visual Analogue Scale (VAS), and objective cough frequency of patients with RCC. Besides, we also compared the incidence of adverse events (AEs) for analysis of safety. PROSPERO registration: CRD42022345940. Findings: 19 eligible RCTs included 3326 patients and 7 medication categories: P2X3 antagonist, GABA modulator, Transient Receptor Potential (TRP) modulator, NK-1 agonist, opioid analgesic, macrolide, and sodium cromoglicate. Compared with placebo, mean difference (MD) of LCQ and 24 h cough frequency for P2X3 antagonist relief were 1.637 (95% CI: 0.887â2.387) and â11.042 (P = 0.035). Compared with placebo, effect sizes (MD for LCQ and cough severity VAS) for GABA modulator were 1.347 (P = 0.003) and â7.843 (P = 0.003). In the network meta-analysis, gefapixant is the most effective treatment for patients with RCC (The Surface Under the Cumulative Ranking Curves (SUCRA) is 0.711 in LCQ, 0.983 in 24 h cough frequency, and 0.786 in cough severity VAS). Lesogaberan had better efficacy than placebo (SUCRA: 0.632 vs. 0.472) in 24 h cough frequency. Eliapixant and lesogaberan had better efficacy than placebo in cough severity VAS. However, TRP modulator had worse efficacy than placebo. In the meta-analysis of AEs, the present study found P2X3 antagonist had a significant correlation to AEs (RR: 1.129, 95% CI: 1.012â1.259), especially taste-related AEs (RR: 6.216, P < 0.05). Interpretation: In this network meta-analysis, P2X3 antagonist showing advantages in terms of efficacy is currently the most promising medication for treatment of RCC. GABA modulator also showed potential efficacy for RCC but with AEs of the central system. Nevertheless, the role of TRP modulator needed to be revisited. Further research is needed to determine the potential beneficiary population for optimizing the pharmacological management of chronic cough. Funding: National Natural Science Foundation of China ( 81870079), Guangdong Science and Technology Project ( 2021A050520012), Incubation Program of National Science Foundation for Distinguished Young Scholars ( GMU2020-207)
Personalized anesthesia and precision medicine: a comprehensive review of genetic factors, artificial intelligence, and patient-specific factors
Precision medicine, characterized by the personalized integration of a patientâs genetic blueprint and clinical history, represents a dynamic paradigm in healthcare evolution. The emerging field of personalized anesthesia is at the intersection of genetics and anesthesiology, where anesthetic care will be tailored to an individualâs genetic make-up, comorbidities and patient-specific factors. Genomics and biomarkers can provide more accurate anesthetic protocols, while artificial intelligence can simplify anesthetic procedures and reduce anesthetic risks, and real-time monitoring tools can improve perioperative safety and efficacy. The aim of this paper is to present and summarize the applications of these related fields in anesthesiology by reviewing them, exploring the potential of advanced technologies in the implementation and development of personalized anesthesia, realizing the future integration of new technologies into clinical practice, and promoting multidisciplinary collaboration between anesthesiology and disciplines such as genomics and artificial intelligence
Dissociable Early Attentional Control Mechanisms Underlying Cognitive and Affective Conflicts
It has been well documented that cognitive conflict is sensitive to the relative proportion of congruent and incongruent trials. However, few studies have examined whether affective conflict processing is modulated as a function of proportion congruency (PC). To address this question we recorded eventrelated potentials (ERP) while subjects performed both cognitive and affective face-word Stroop tasks. By varying the proportion of congruent and incongruent trials in each block, we examined the extent to which PC impacts both cognitive and affective conflict control at different temporal stages. Results showed that in the cognitive task an anteriorly localized early N2 component occurred predominantly in the low proportion congruency context, whereas in the affective task it was found to occur in the high proportion congruency one. The N2 effects across the two tasks were localized to the dorsolateral prefrontal cortex, where responses were increased in the cognitive task but decreased in the affective one. Furthermore, high proportions of congruent items produced both larger amplitude of a posteriorly localized sustained potential component and a larger behavioral Stroop effect in cognitive and affective tasks. Our findings suggest that cognitive and affective conflicts engage early dissociable attentional control mechanisms and a later common conflict response system
Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China
Human interaction with animals has been implicated as a primary risk factor for several high impact zoonoses, including many bat-origin viral diseases; however, the animal-to-human spillover events that lead to emerging diseases are rarely observed or clinically examined, and the link between specific interactions and spillover risk is poorly understood. To investigate this phenomenon, we conducted biological-behavioral surveillance among rural residents in the Yunnan, Guangxi, and Guangdong provinces of Southern China, where we have identified a number of SARS-related coronaviruses in bats. Serum samples were tested for four bat-borne coronaviruses using newly developed enzyme-linked immunosorbent assays (ELISA). Survey data were used to characterize associations between human-animal contact and bat coronavirus spillover risk. A total of 1,596 residents were enrolled in the study from 2015 to 2017. Nine participants (0.6%) tested positive for bat coronaviruses. 265 (17%) participants reported severe acute respiratory infection (SARI) and/or influenza-like illness (ILI) symptoms in the past year, which were associated with poultry, carnivore, rodent/shrew, and bat contact, with variability by family income and province of residence. This study provides serological evidence of bat coronavirus spillover in rural communities in Southern China. The low seroprevalence observed in this study suggests that bat coronavirus spillover is a rare event. Nonetheless, this study highlights associations between human-animal interaction and zoonotic spillover risk. These findings can be used to support targeted biological behavioral surveillance in high-risk geographic areas in order to reduce the risk of zoonotic disease emergence
LCâMS/MS isomeric profiling of permethylated Nâglycans derived from serum haptoglobin of hepatocellular carcinoma (HCC) and cirrhotic patients
Early stage detection and cancer treatment demand the identification of reliable biomarkers. Over the past decades, efforts have been devoted to assess the variation of glycosylation level as well as the glycan structures of proteins in blood or serum, associated with the development and/or progression of several cancers, including liver. Herein, an LCâMS/MSâbased analysis was conducted to define the glycosylation patterns of haptoglobin glycoprotein derived from sera collected from cirrhotic and hepatocellular carcinoma (HCC) patients. The haptoglobin samples were extracted from serum using an antibodyâimmobilized column prior to the release of Nâglycans. A comparison of nonâisomeric and isomeric permethylated glycan forms was achieved using C18 and porous graphitic carbon (PGC) columns, respectively. In the case of C18âLCâMS/MS analysis, 25 glycan structures were identified of which 10 sialylated structures were found to be statistically significant between the two cohorts. Also, 8 out of 34 glycan structures identified by PGCâLCâMS/MS were found to be statistically significant, suggesting that isomeric distributions of a particular glycan composition were different in abundances between the two cohorts. The glycan isoform patterns distinguished early stage HCC from cirrhotic patients. Both retention times and tandem mass spectra were utilized to determine the specific isomeric glycan structures. All of the glycan isomers, which were statistically significant, were either branch fucosylated or composed of αâ2,6 linked sialic acid moieties. The result of this study demonstrates the potential importance of isomeric separation for defining disease prompted aberrant glycan changes. The levels of several glycan isoforms effectively distinguished early stage HCC from cirrhosis.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138429/1/elps6218_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138429/2/elps6218.pd
Visual Detection and Image Processing of Parking Space Based on Deep Learning
The automatic parking system based on vision is greatly affected by uneven lighting, which is difficult to make an accurate judgment on parking spaces in the case of complex image information. To solve this problem, this paper proposes a parking space visual detection and image processing method based on deep learning. Firstly, a 360-degree panoramic system was designed to photograph the vehicle environment. The image has been processed to obtain a panoramic aerial view, which was input as the original image of the parking space detection system. Secondly, the Faster R-CNN (Region-Convolutional Neural Network) parking detection model was established based on deep learning. It was aimed to detect and extract the parking space from the input image. Thirdly, the problems of uneven illumination and complex background were solved effectively by removing the background light from the image. Finally, a parking space extraction method based on the connected region has been designed, which further simplified the parking space extraction and image processing. The experiment results show that the mAP (mean Average Precision) value of the Faster R-CNN model using 101-Floor ResNet as the feature extraction network is 89.30%, which is 2.28% higher than that of the Faster R-CNN model using 50-Floor ResNet as the feature extraction network. The model built in this paper can detect most parking spaces well. The position of the output target box is accurate. In some test scenarios, the confidence of parking space recognition can even reach 100%. In summary, the proposed method can realize the effective identification and accurate positioning of parking spaces
- âŠ