59 research outputs found

    Towards Temporal Edge Regression: A Case Study on Agriculture Trade Between Nations

    Full text link
    Recently, Graph Neural Networks (GNNs) have shown promising performance in tasks on dynamic graphs such as node classification, link prediction and graph regression. However, few work has studied the temporal edge regression task which has important real-world applications. In this paper, we explore the application of GNNs to edge regression tasks in both static and dynamic settings, focusing on predicting food and agriculture trade values between nations. We introduce three simple yet strong baselines and comprehensively evaluate one static and three dynamic GNN models using the UN Trade dataset. Our experimental results reveal that the baselines exhibit remarkably strong performance across various settings, highlighting the inadequacy of existing GNNs. We also find that TGN outperforms other GNN models, suggesting TGN is a more appropriate choice for edge regression tasks. Moreover, we note that the proportion of negative edges in the training samples significantly affects the test performance. The companion source code can be found at: https://github.com/scylj1/GNN_Edge_Regression.Comment: 12 pages, 4 figures, 4 table

    Laplacian Change Point Detection for Dynamic Graphs

    Full text link
    Dynamic and temporal graphs are rich data structures that are used to model complex relationships between entities over time. In particular, anomaly detection in temporal graphs is crucial for many real world applications such as intrusion identification in network systems, detection of ecosystem disturbances and detection of epidemic outbreaks. In this paper, we focus on change point detection in dynamic graphs and address two main challenges associated with this problem: I) how to compare graph snapshots across time, II) how to capture temporal dependencies. To solve the above challenges, we propose Laplacian Anomaly Detection (LAD) which uses the spectrum of the Laplacian matrix of the graph structure at each snapshot to obtain low dimensional embeddings. LAD explicitly models short term and long term dependencies by applying two sliding windows. In synthetic experiments, LAD outperforms the state-of-the-art method. We also evaluate our method on three real dynamic networks: UCI message network, US senate co-sponsorship network and Canadian bill voting network. In all three datasets, we demonstrate that our method can more effectively identify anomalous time points according to significant real world events.Comment: in KDD 2020, 10 page
    • …
    corecore