66 research outputs found
Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy
This dissertation consists of three parts. First, we study magnetic domains in single crystals using high resolution magnetic force microscopy (MFM). In addition to the elongated, wavy nano-domains reported by a previous MFM study, we found that the micrometer size, star-shaped fractal pattern is constructed of an elongated network of nano-domains about 20 nm in width, with resolution-limited domain walls thinner than 2 nm. Second, we studied extra Dirac cones of multilayer graphene on SiC surface by ARPES and SPA-LEED. We discovered extra Dirac cones on Fermi surface due to SiC 6 6 and graphene 6 6 coincidence lattice on both single-layer and three-layer graphene sheets. We interpreted the position and intensity of the Dirac cone replicas, based on the scattering vectors from LEED patterns. We found the positions of replica Dirac cones are determined mostly by the 6 6 SiC superlattice even graphene layers grown thicker. Finally, we studied the electronic structure of MoTe by ARPES and experimentally confirmed the prediction of type II Weyl state in this material. By combining the result of Density Functional Theory calculations and Berry curvature calculations with out experimental data, we identified Fermi arcs, track states and Weyl points, all features predicted to exist in a type II Weyl semimetal. This material is an excellent playground for studies of exotic Fermions
Three-dimensionality of the bulk electronic structure in WTe2
We use temperature- and field-dependent resistivity measurements
[Shubnikov--de Haas (SdH) quantum oscillations] and ultrahigh resolution,
tunable, vacuum ultraviolet (VUV) laser-based angle-resolved photoemission
spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk
electronic structure in WTe2, a type-II Weyl semimetal. The bulk Fermi surface
(FS) consists of two pairs of electron pockets and two pairs of hole pockets
along the X-Gamma-X direction as detected by using an incident photon energy of
6.7 eV, which is consistent with the previously reported data. However, if
using an incident photon energy of 6.36 eV, another pair of tiny electron
pockets is detected on both sides of the Gamma point, which is in agreement
with the small quantum oscillation frequency peak observed in the
magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of
electron pockets and two pairs of hole pockets in total. With the ability of
fine tuning the incident photon energy, we demonstrate the strong
three-dimensionality of the bulk electronic structure in WTe2. The combination
of resistivity and ARPES measurements reveal the complete, and consistent,
picture of the bulk electronic structure of this material.Comment: 6 pages, 3 figure
Observation of Fermi Arcs in Type-II Weyl Semimetal Candidate WTe2
We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved
photoemission spectroscopy (ARPES) to study the electronic properties of
WTe, a material that was predicted to be a type-II Weyl semimetal. The Weyl
fermion states in WTe2 were proposed to emerge at the crossing points of
electron and hole pockets; and Fermi arcs connecting electron and hole pockets
would be visible in the spectral function on (001) surface. Here we report the
observation of such Fermi arcs in WTe2 confirming the theoretical predictions.
This provides strong evidence for type-II Weyl semimetallic states in WTe2.Comment: 5 pages, 4 figure
Electronic structure of RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy
We use high resolution angle-resolved photoemission spectroscopy (ARPES) and
electronic structure calculations to study the electronic properties of
rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The
experimentally measured Fermi surface (FS) of RSb consists of at least two
concentric hole pockets at the point and two intersecting electron
pockets at the point. These data agree relatively well with the electronic
structure calculations. Detailed photon energy dependence measurements using
both synchrotron and laser ARPES systems indicate that there is at least one
Fermi surface sheet with strong three-dimensionality centered at the
point. Due to the "lanthanide contraction", the unit cell of different
rare-earth monoantimonides shrinks when changing rare-earth ion from CeSb to
LuSb. This results in the differences in the chemical potentials in these
compounds, which is demonstrated by both ARPES measurements and electronic
structure calculations. Interestingly, in CeSb, the intersecting electron
pockets at the point seem to be touching the valence bands, forming a
four-fold degenerate Dirac-like feature. On the other hand, the remaining
rare-earth monoantimonides show significant gaps between the upper and lower
bands at the point. Furthermore, similar to the previously reported results
of LaBi, a Dirac-like structure was observed at the point in YSb,
CeSb, and GdSb, compounds showing relatively high magnetoresistance. This
Dirac-like structure may contribute to the unusually large magnetoresistance in
these compounds.Comment: 8 figure
Temperature induced Lifshitz transition in WTe2
We use ultra-high resolution, tunable, VUV laser-based, angle-resolved
photoemission spectroscopy (ARPES) and temperature and field dependent
resistivity and thermoelectric power (TEP) measurements to study the electronic
properties of WTe2, a compound that manifests exceptionally large, temperature
dependent magnetoresistance. The temperature dependence of the TEP shows a
change of slope at T=175 K and the Kohler rule breaks down above 70-140 K
range. The Fermi surface consists of two electron pockets and two pairs of hole
pockets along the X-Gamma-X direction. Upon increase of temperature from 40K,
the hole pockets gradually sink below the chemical potential. Like BaFe2As2,
WTe2 has clear and substantial changes in its Fermi surface driven by modest
changes in temperature. In WTe2, this leads to a rare example of temperature
induced Lifshitz transition, associated with the complete disappearance of the
hole pockets. These dramatic changes of the electronic structure naturally
explain unusual features of the transport data.Comment: 5 pages, 3 figure
Isotope effect on electron-phonon interaction in the multiband superconductor MgB2
We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E2g phonon mode, is shifted to higher binding energy by ∼3.5 meV in Mg10B2 and the shift is not affected by superconducting transition. These results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown
- …