38 research outputs found

    Human Parechovirus Infections in Monkeys with Diarrhea, China

    Get PDF
    Information about human parechovirus (HPeV) infection in animals is scant. Using 5′ untranslated region reverse transcription–PCR, we detected HPeV in feces of monkeys with diarrhea and sequenced the complete genome of 1 isolate (SH6). Monkeys may serve as reservoirs for zoonotic HPeV transmissions and as models for studies of HPeV pathogenesis

    Unraveling the Rich Fragmentation Dynamics Associated with S-H Bond Fission Following Photoexcitation of H <sub>2</sub>S at Wavelengths ∼129.1 nm

    Get PDF
    H2S is being detected in the atmospheres of ever more interstellar bodies, and photolysis is an important mechanism by which it is processed. Here, we report H Rydberg atom time-of-flight measurements following the excitation of H2S molecules to selected rotational (JKaKc′) levels of the 1B1 Rydberg state associated with the strong absorption feature at wavelengths of λ ∼ 129.1 nm. Analysis of the total kinetic energy release spectra derived from these data reveals that all levels predissociate to yield H atoms in conjunction with both SH(A) and SH(X) partners and that the primary SH(A)/SH(X) product branching ratio increases steeply with ⟨Jb2⟩, the square of the rotational angular momentum about the b-inertial axis in the excited state. These products arise via competing homogeneous (vibronic) and heterogeneous (Coriolis-induced) predissociation pathways that involve coupling to dissociative potential energy surfaces (PES(s)) of, respectively, 1A″ and 1A′ symmetries. The present data also show H + SH(A) product formation when exciting the JKaKc′ = 000 and 111 levels, for which ⟨Jb2⟩ = 0 and Coriolis coupling to the 1A′ PES(s) is symmetry forbidden, implying the operation of another, hitherto unrecognized, route to forming H + SH(A) products following excitation of H2S at energies above ∼9 eV. These data can be expected to stimulate future ab initio molecular dynamic studies that test, refine, and define the currently inferred predissociation pathways available to photoexcited H2S molecules

    Charmless BsPP,PV,VVB_s\to PP, PV, VV Decays Based on the six-quark Effective Hamiltonian with Strong Phase Effects II

    Full text link
    We provide a systematic study of charmless BsPP,PV,VVB_s \to PP, PV, VV decays (PP and VV denote pseudoscalar and vector mesons, respectively) based on an approximate six-quark operator effective Hamiltonian from QCD. The calculation of the relevant hard-scattering kernels is carried out, the resulting transition form factors are consistent with the results of QCD sum rule calculations. By taking into account important classes of power corrections involving "chirally-enhanced" terms and the vertex corrections as well as weak annihilation contributions with non-trivial strong phase, we present predictions for the branching ratios and CP asymmetries of BsB_s decays into PP, PV and VV final states, and also for the corresponding polarization observables in VV final states. It is found that the weak annihilation contributions with non-trivial strong phase have remarkable effects on the observables in the color-suppressed and penguin-dominated decay modes. In addition, we discuss the SU(3) flavor symmetry and show that the symmetry relations are generally respected
    corecore