11,462 research outputs found
Bulk Viscosity of dual Fluid at Finite Cutoff Surface via Gravity/Fluid correspondence in Einstein-Maxwell Gravity
Based on the previous paper arXiv:1207.5309, we investigate the possibility
to find out the bulk viscosity of dual fluid at the finite cutoff surface via
gravity/fluid correspondence in Einstein-Maxwell gravity. We find that if we
adopt new conditions to fix the undetermined parameters contained in the stress
tensor and charged current of the dual fluid, two new terms appear in the
stress tensor of the dual fluid. One new term is related to the bulk viscosity
term, while the other can be related to the perturbation of energy density. In
addition, since the parameters contained in the charged current are the same,
the charged current is not changed.Comment: 15 pages, no figure, typos corrected, new references and comments
added, version accepted by PL
Angular Stripe Phase in Spin-Orbital-Angular-Momentum Coupled Bose Condensates
We propose that novel superfluid with supersolid-like properties - angular
stripe phase - can be realized in a pancake-like spin-1/2 Bose gas with
spin-orbital-angular-momentum coupling. We predict a rich ground-state phase
diagram, including the vortex-antivortex pair phase, half-skyrmion phase, and
two different angular stripe phases. The stripe phases feature modulated
angular density-density correlation with sizable contrast and can occupy a
relatively large parameter space. The low-lying collective excitations, such as
the dipole and breathing modes, show distinct behaviors in different phases.
The existence of the novel stripe phase is also clearly indicated in the
energetic and dynamic instabilities of collective modes near phase transitions.
Our predictions of the angular stripe phase could be readily examined in
current cold-atom experiments with Rb and K.Comment: 5+3 pages, 4+2 figure
Network infection source identification under the SIRI model
We study the problem of identifying a single infection source in a network
under the susceptible-infected-recovered-infected (SIRI) model. We describe the
infection model via a state-space model, and utilizing a state propagation
approach, we derive an algorithm known as the heterogeneous infection spreading
source (HISS) estimator, to infer the infection source. The HISS estimator uses
the observations of node states at a particular time, where the elapsed time
from the start of the infection is unknown. It is able to incorporate side
information (if any) of the observed states of a subset of nodes at different
times, and of the prior probability of each infected or recovered node to be
the infection source. Simulation results suggest that the HISS estimator
outperforms the dynamic message pass- ing and Jordan center estimators over a
wide range of infection and reinfection rates.Comment: 5 pages, 3 figures; to present in ICASSP 201
A general comparison theorem for 1-dimensional anticipated BSDEs
Anticipated backward stochastic differential equation (ABSDE) studied the
first time in 2007 is a new type of stochastic differential equations. In this
paper, we establish a general comparison theorem for 1-dimensional ABSDEs with
the generators depending on the anticipated term of .Comment: 8 page
(2,9-Dimethyl-1,10-phenanthroline-κ2 N,N′)bisÂ(2-hydroxyÂbenzoato)-κO;κ2 O,O′-cobalt(II)
In the title compound, [Co(C7H5O3)2(C14H12N2)], the CoII ion is five-coordinated by two N atoms from one 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand and three O atoms from two 2-hydroxyÂbenzoate anions in a distorted trigonal bipyramidal geometry. The carboxylÂate group of one of the two 2-hydroxyÂbenzoate anions is monodentate with a normal Co—O distance [1.9804 (18) Å], while the other is bidentate with two longer Co—O bonds [2.1981 (18) and 2.1359 (19) Å]. The crystal structure is stabilized by aromatic π–π stacking interÂactions [centroid–centroid distances of 4.0380 (3) and 3.8216 (3) Å between dmphen/dmphen and benzene/dmphen rings, respectively] and C—H⋯π(benzene) interÂactions
Transfer function characterization for HFCTs used in partial discharge detection
High frequency current transformers (HFCTs) are widely employed to detect partial discharge (PD) induced currents in high voltage equipment. This paper describes measurements of the wideband transfer functions of HFCTs so that their influence on the detected pulse shape in advanced PD measurement applications can be characterized. The time-domain method based on the pulse response is a useful way to represent HFCT transfer functions as it allows numerical determination of the forward and reverse transfer functions of the sensor. However, while the method is accurate at high frequencies it can have limited resolution at low frequencies. In this paper, a composite time-domain method is presented to allow accurate characterization of the HFCT transfer functions at both low and high frequencies. The composite method was tested on two different HFCTs and the results indicate that the method can characterize their transfer functions ranging from several kHz to tens of MHz. Results are found to be in good agreement with frequency-domain measurements up to 50 MHz. Measurement procedures for using the method are summarized to facilitate further applications
- …