519 research outputs found
Recommended from our members
Viral-Assisted Assembly and Photoelectric Response of Individual Au/CdSe Core–Shell Nanowires
Individual viral-templated Au/CdSe core–shell nanowires were synthesized and electrically characterized at room temperature. The Au nanowire cores were constructed using a genetically-modified filamentous M13 bacteriophage as a scaffold. Au nanoparticles were selectively bound to the viruses and used as seeds for electroless deposition, forming continuous Au nanowires. The nanocrystalline CdSe shell material which formed a coaxial heterojunction with the Au nanowire was created by electrodeposition. Electrical characterization of the Au nanowires revealed resistance variations associated with the viral-templated assembly process. The photoelectrical response of the core–shell nanowires was used to assess the interaction between the two component materials. A correlation was found between the dark current of the Au/CdSe core–shell nanowire and the magnitude of the collected photocurrent.Engineering and Applied Science
A primer for microbiome time-series analysis
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coenen, A. R., Hu, S. K., Luo, E., Muratore, D., & Weitz, J. S. A primer for microbiome time-series analysis. Frontiers in Genetics, 11, (2020): 310, doi:10.3389/fgene.2020.00310.Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community structure and activity, identifying expression levels with a diel periodic signal, and identifying putative interactions within a complex community. Modules are presented as self-contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated and compositional data, with an eye to improving the robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to broaden the use of time-series analytic methods within the microbial ecology research community.This work was supported by the Simons Foundation (SCOPE award ID 329108) and the National Science Foundation (NSF Bio Oc 1829636)
Non-Interactive Differentially Anonymous Router
A recent work by Shi and Wu (Eurocrypt\u2721) sugested a new, non-interactive abstraction for
anonymous routing, coined Non-Interactive Anonymous Router (\NIAR). They show how to construct a \NIAR scheme with succinct communication from bilinear groups. Unfortunately, the router needs to perform quadratic computation (in the number
of senders/receivers) to perform each routing.
In this paper, we show that if one is willing to relax the security notion to -differential privacy,
henceforth also called -differential anonymity, then, a non-interactive
construction exists with subquadratic router computation, also assuming standard hardness assumptions in bilinear groups.
Morever, even when 1-1/\poly\log n fraction of the senders are corrupt, we can attain strong privacy parameters where \epsilon = O(1/\poly\log n) and \delta = \negl(n)
Patient Follow-Up After Participating in a Beach-Based Skin Cancer Screening Program
Many skin cancer screenings occur in non-traditional community settings, with the beach being an important setting due to beachgoers being at high risk for skin cancer. This study is a secondary analysis of data from a randomized trial of a skin cancer intervention in which participants (n = 312) had a full-body skin examination by a clinician and received a presumptive diagnosis (abnormal finding, no abnormal finding). Participants’ pursuit of follow-up was assessed post-intervention (n = 283). Analyses examined: (1) participant’s recall of screening results; and (2) whether cognitive and behavioral variables were associated with follow-up being as advised. Just 12% of participants (36/312) did not correctly recall the results of their skin examination. One-third (33%, 93/283) of participants’ follow-up was classified as being not as advised (recommend follow-up not pursued, unadvised follow-up pursued). Among participants whose follow-up was not as advised, 71% (66/93) did not seek recommended care. None of the measured behavioral and cognitive variables were significantly associated with recall of screening examination results or whether follow-up was as advised. Research is needed to determine what factors are associated with follow-up being as advised and to develop messages that increase receipt of advised follow-up care
Everything is a Race and Nakamoto Always Wins
Nakamoto invented the longest chain protocol, and claimed its security by analyzing the private double-spend attack, a race between the adversary and the honest nodes to grow a longer chain. But is it the worst attack? We answer the question in the affirmative for three classes of longest chain protocols, designed for different consensus models: 1) Nakamoto\u27s original Proof-of-Work protocol; 2) Ouroboros and SnowWhite Proof-of-Stake protocols; 3) Chia Proof-of-Space protocol. As a consequence, exact characterization of the maximum tolerable adversary power is obtained for each protocol as a function of the average block time normalized by the network delay. The security analysis of these protocols is performed in a unified manner by a novel method of reducing all attacks to a race between the adversary and the honest nodes
Enhanced Plant-Derived Vesicles for Nucleotide Delivery for Cancer Therapy
Small RNAs (microRNAs [miRNAs] or small interfering RNAs [siRNAs]) are effective tools for cancer therapy, but many of the existing carriers for their delivery are limited by low bioavailability, insufficient loading, impaired transport across biological barriers, and low delivery into the tumor microenvironment. Extracellular vesicle (EV)-based communication in mammalian and plant systems is important for many physiological and pathological processes, and EVs show promise as carriers for RNA interference molecules. However, some fundamental issues limit their use, such as insufficient cargo loading and low potential for scaling production. Plant-derived vesicles (PDVs) are membrane-coated vesicles released in the apoplastic fluid of plants that contain biomolecules that play a role in several biological mechanisms. Here, we developed an alternative approach to deliver miRNA for cancer therapy using PDVs. We isolated vesicles from watermelon and formulated a hybrid, exosomal, polymeric system in which PDVs were combined with a dendrimer bound to miRNA146 mimic. Third generation PAMAM was chosen due to its high branching structure and versatility for loading molecules of interest. We performed several in vivo experiments to demonstrate the therapeutic efficacy of our compound and explored in vitro biological mechanisms underlying the anti-tumor effects of miRNA146, which are mostly related to its anti-angiogenic activity
DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease
DJ-1 is a multifunctional protein that plays an important role in oxidative stress, cell death, and synucleinopathies, including Parkinson disease. Previous studies have demonstrated that total DJ-1 levels decrease in the cerebrospinal fluid, but do not change significantly in human plasma from patients with Parkinson disease when compared with controls. In this study, we measured total DJ-1 and its isoforms in whole blood of patients with Parkinson disease at various stages, Alzheimer disease, and healthy controls to identify potential peripheral biomarkers of PD. In an initial discovery study of 119 subjects, 7 DJ-1 isoforms were reliably detected, and blood levels of those with 4-hydroxy-2-nonenal modifications were discovered to be altered in late-stage Parkinson disease. This result was further confirmed in a validation study of another 114 participants, suggesting that, unlike total DJ-1 levels, post-translationally modified isoforms of DJ-1 from whole blood are candidate biomarkers of late-stage Parkinson disease
Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development
Peer reviewedPublisher PD
Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity
BACKGROUND: This study provided additional data on the effects of a therapeutic electromagnetic field (EMF) device on growth and vascularization of murine 16/C mammary adenocarcinoma cells implanted in C3H/HeJ mice. METHODS: The therapeutic EMF device generated a defined 120 Hz semi sine wave pulse signal of variable intensity. Murine 16/C mammary adenocarcinoma tumor fragments were implanted subcutaneously between the scapulae of syngeneic C3H mice. Once the tumor grew to 100 mm(3), daily EMF treatments were started by placing the cage of mice within the EMF field. Treatment ranged from 10 to 20 milli-Tesla (mT) and was given for 3 to 80 minutes either once or twice a day for 12 days. Tumors were measured and volumes calculated each 3–4 days. RESULTS: Therapeutic EMF treatment significantly suppressed tumor growth in all 7 EMF treated groups. Exposure to 20mT for 10 minutes twice a day was the most effective tumor growth suppressor. The effect of EMF treatment on extent of tumor vascularization, necrosis and viable area was determined after euthanasia. The EMF reduced the vascular (CD31 immunohistochemically positive) volume fraction and increased the necrotic volume of the tumor. Treatment with 15 mT for 10 min/d gave the maximum anti-angiogenic effect. Lack of a significant correlation between tumor CD 31 positive area and tumor growth rate indicates a mechanism for suppression of tumor growth in addition to suppression of tumor vascularization. CONCLUSION: It is proposed that EMF therapy aimed at suppression of tumor growth and vascularization may prove a safe alternative for patients whether they are or are not candidates for conventional cancer therapy
- …