133 research outputs found
Serum IgG2 levels are specifically associated with whole-body insulin-mediated glucose disposal in non-diabetic offspring of type 2 diabetic individuals. a cross-sectional study
.Preclinical studies suggested that IgG2c isotype may specifically impair skeletal muscle insulin
sensitivity in mice. In this study we investigated the association between serum levels of the four IgG
subclasses and insulin sensitivity in non-diabetic individuals. Total IgG, IgG1, IgG2, IgG3 and IgG4
levels were measured in 262 subjects. Whole-body insulin sensitivity was assessed by euglycemic
hyperinsulinemic clamp. IgG2 levels were positively correlated with BMI, waist circumference, 2-h postload
glucose levels and complement C3. Serum IgG2, but not IgG1, IgG3 and IgG4 levels were negatively
correlated with whole-body insulin sensitivity (r = −0.17; P = 0.003) and muscle insulin sensitivity index
(r = −0.16; P = 0.03) after adjustment for age and gender. No significant correlation was found between
IgG2 levels and hepatic insulin resistance assessed by HOMA-IR and liver IR index. In a multivariable
regression analysis including variables known to affect insulin sensitivity such as age, gender, BMI,
smoking, lipids, inflammatory markers, fasting and 2-h post-load glucose levels, IgG2 levels were
independently associated with insulin-stimulated glucose disposal (β = −0.115, 95% CI: −0.541 to
−0.024; P = 0.03). These data demonstrate the independent association between higher levels of IgG2
and decreased whole-body insulin sensitivity, thus confirming in humans the animal-based evidence
indicating the pathogenic role of IgG2 in insulin resistance
Insulin sensitivity, β-cell function, and incretin effect in individuals with elevated 1-hour postload plasma glucose levels
OBJECTIVE: Individuals with normal glucose tolerance (NGT), whose 1-h postload plasma glucose is ≥155 mg/dL (NGT 1h-high), have an increased risk of type 2 diabetes. The purpose of this study was to characterize their metabolic phenotype.
RESEARCH DESIGN AND METHODS: A total of 305 nondiabetic offspring of type 2 diabetic patients was consecutively recruited. Insulin secretion was assessed using both indexes derived from oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp.
RESULTS: Compared with individuals with a 1-h postload plasma glucose <155 mg/dL (NGT 1h-low), NGT 1h-high individuals exhibited lower insulin sensitivity after adjustment for age, sex, and BMI. Insulin secretion estimated from the OGTT did not differ between the two groups of individuals. By contrast, compared with NGT 1h-low individuals, the acute insulin response during an IVGTT and the disposition index were significantly reduced in NGT 1h-high individuals after adjustment for age, sex, and BMI. Incretin effect, estimated as the ratio between total insulin responses during OGTT and IVGTT, was higher in NGT 1h-high individuals compared with NGT 1h-low individuals.
CONCLUSIONS: NGT 1h-high individuals may represent an intermediate state of glucose intolerance between NGT and type 2 diabetes characterized by insulin resistance and reduced β-cell function, the two main pathophysiological defects responsible for the development of type 2 diabetes. Postload hyperglycemia is the result of an intrinsic β-cell defect rather than impaired incretin effec
Constitutive Expression of Insulin Receptor Substrate (IRS)-1 Inhibits Myogenic Differentiation through Nuclear Exclusion of Foxo1 in L6 Myoblasts
Insulin-like growth factors (IGFs) are well known to play essential roles in enhancement of myogenic differentiation. In this report we showed that initial IGF-I signal activation but long-term IGF-1 signal termination are required for myogenic differentiation. L6 myoblast stably transfected with myc-epitope tagged insulin receptor substrate-1, myc-IRS-1 (L6-mIRS1) was unable to differentiate into myotubes, indicating that IRS-1 constitutive expression inhibited myogenesis. To elucidate the molecular mechanisms underlying myogenic inhibition, IGF-I signaling was examined. IGF-I treatment of control L6 cells for 18 h resulted in a marked suppression of IGF-I stimulated IRS-1 association with the p85 PI 3-kinase and suppression of activation of Akt that correlated with a down regulation of IRS-1 protein. L6-mIRS1 cells, in contrast, had sustained high levels of IRS-1 protein following 18 h of IGF-I treatment with persistent p85 PI 3-kinase association with IRS-1, Akt phosphorylation and phosphorylation of the downstream Akt substrate, Foxo1. Consistent with Foxo1 phosphorylation, Foxo1 protein was excluded from the nuclei in L6-mIRS1 cells, whereas Foxo1 was localized in the nuclei in control L6 cells during induction of differentiation. In addition, L6 cells stably expressing a dominant-interfering form of Foxo1, Δ256Foxo1 (L6-Δ256Foxo1) were unable to differentiate into myotubes. Together, these data demonstrate that IGF-I regulation of Foxo1 nuclear localization is essential for the myogenic program in L6 cells but that persistent activation of IGF-1 signaling pathways results in a negative feedback to prevent myogenesis
Correspondence between the international diabetes federation criteria for metabolic syndrome and insulin resistance in a cohort of Italian nondiabetic caucasians: The GISIR database [4]
[No abstract available
A Functional Variant of the Dimethylarginine Dimethylaminohydrolase-2 Gene Is Associated with Insulin Sensitivity
Background: Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase, which was associated with insulin resistance. Dimethylarginine dimethylaminohydrolase (DDAH) is the major determinant of plasma ADMA. Examining data from the DIAGRAM+ (Diabetes Genetics Replication And Meta-analysis), we identified a variant (rs9267551) in the DDAH2 gene nominally associated with type 2 diabetes (P =3610 25). Methodology/Principal Findings: initially, we assessed the functional impact of rs9267551 in human endothelial cells (HUVECs), observing that the G allele had a lower transcriptional activity resulting in reduced expression of DDAH2 and decreased NO production in primary HUVECs naturally carrying it. We then proceeded to investigate whether this variant is associated with insulin sensitivity in vivo. To this end, two cohorts of nondiabetic subjects of European ancestry were studied. In sample 1 (n = 958) insulin sensitivity was determined by the insulin sensitivity index (ISI), while in sample 2 (n = 527) it was measured with a euglycemic-hyperinsulinemic clamp. In sample 1, carriers of the GG genotype had lower ISI than carriers of the C allele (67633 vs.79644; P = 0.003 after adjusting for age, gender, and BMI). ADMA levels were higher in subjects carrying the GG genotype than in carriers of the C allele (0.6860.14 vs. 0.5760.14 mmol/l; P = 0.04). In sample 2, glucose disposal was lower in GG carriers as compared with C carriers (9.364.1 vs. 11.064.2 mg6Kg 21 free fat mass6min 21; P = 0.009)
TRAF6 Promotes Myogenic Differentiation via the TAK1/p38 Mitogen-Activated Protein Kinase and Akt Pathways
p38 mitogen-activated protein kinase (MAPK) is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways
Comprehensive mRNA Expression Profiling Distinguishes Tauopathies and Identifies Shared Molecular Pathways
Background: Understanding the aetiologies of neurodegenerative diseases such as Alzheimer's disease (AD), Pick's disease (PiD), Progressive Supranuclear Palsy (PSP) and Frontotemporal dementia (FTD) is often hampered by the considerable clinical and molecular overlap between these diseases and normal ageing. The development of high throughput genomic technologies such as microarrays provide a new molecular tool to gain insight in the complexity and relationships between diseases, as they provide data on the simultaneous activity of multiple genes, gene networks and cellular pathways. Methodology/Principal Findings: We have constructed genome wide expression profiles from snap frozen post-mortem tissue from the medial temporal lobe of patients with four neurodegenerative disorders (5 AD, 5 PSP, 5 PiD and 5 FTD patients) and 5 control subjects. All patients were matched for age, gender, ApoE-e and MAPT (tau) haplotype. From all groups a total of 790 probes were shown to be differently expressed when compared to control individuals. The results from these experiments were then used to investigate the correlations between clinical, pathological and molecular findings. From the 790 identified probes we extracted a gene set of 166 probes whose expression could discriminate between these disorders and normal ageing. Conclusions/Significance: From genome wide expression profiles we extracted a gene set of 166 probes whose expression could discriminate between neurological disorders and normal ageing. This gene set can be further developed into an accurate microarray-based classification test. Furthermore, from this dataset we extracted a disease specific set of genes and identified two aging related transcription factors (FOXO1A and FOXO3A) as possible drug targets related to neurodegenerative disease
ENPP1 Affects Insulin Action and Secretion: Evidences from In Vitro Studies
The aim of this study was to deeper investigate the mechanisms through which
ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on
insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1
cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6
skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation
(HepG2, L6, INS1E), Akt-Ser473,
ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9
phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and
2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA
(L6), insulin secretion and caspase-3 activation (INS1E) were also investigated.
Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K
(20%, 52% and 11% reduction vs. untransfected cells) and
twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%).
Similar data were obtained with Akt-Ser473,
ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in
HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in
untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%).
Insulin-induced glucose uptake in untransfected L6 (60% increase over
basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly
reduced in L6-K and twice as much in L6-Q (13% and 25% reduction
vs. untransfected cells). Glucose-induced insulin secretion was 60%
reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated
caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and
INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in
isolated human islets from homozygous QQ donors as compared to those from KK and
KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121
variant is operating, affects insulin signaling and glucose metabolism in
skeletal muscle- and liver-cells and both function and survival of insulin
secreting beta-cells, thus representing a strong pathogenic factor predisposing
to insulin resistance, defective insulin secretion and glucose metabolism
abnormalities
Altered Insulin Receptor Signalling and β-Cell Cycle Dynamics in Type 2 Diabetes Mellitus
Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells – which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM
- …