8 research outputs found

    Use of Geospatial, Hydrologic, and Geochemical Modeling to Determine the Influence of Wetland-Derived Organic Matter in Coastal Waters in Response to Extreme Weather Events

    Get PDF
    Flooding from extreme weather events (EWE), such as hurricanes, exports large amounts of dissolved organic matter (DOM) to both estuaries and coastal waters globally. Hydrologic connectivity of wetlands to adjacent river channels during flood events can potentially have a major control on the DOM exported to coastal waters after EWEs. In this study, a geographic information system based flood model was used to: (1) determine the volume of flooded wetlands in a river corridor following Hurricane Matthew in 2016; (2) compute the resulting volume fluxes of DOM to the Neuse River Estuary-Pamlico Sound (NRE-PS), in eastern North Carolina and (3) use the flood model to quantify the wetland contribution to DOM export. The flood model-derived contributions were validated with a Bayesian Monte Carlo mixing model combining measurements of DOM quality: specific UV Absorbance at 254 nm (SUVA254), spectral slope ratio (SR), and stable isotope ratios of dissolved organic carbon (δ13C-DOC). Results indicated that (1) hydrologic connectivity of the freshwater riparian wetlands caused the wetlands to become the primary source of organic matter (OM) that was exported into the NRE-PS after Matthew and (2) this source lingered in these coastal waters in the months after the storm. Thus, in consideration of the pulse-shunt concept, EWE such as Hurricane Matthew cause pulses of DOM from wetlands, which were the primary source of the OM shunted from the terrestrial environment to the estuary and sound. Wetlands constituted ca. 48% of the annual loading of DOC into the NRE and 16% of DOC loading into the PS over a period of 30 days after Hurricane Matthew. Results were consistent with prior studies in this system, and other coastal ecosystems, that attributed a high reactivity of DOM as the underlying reason for large CO2 releases following EWE. Adapting the pulse-shunt concept to estuaries requires the addition of a “processing” step to account for the DOM to CO2 dynamics, thus a new pulse-shunt process is proposed to incorporate coastal waters. Our results suggest that with increasing frequency and intensity of EWE, strengthening of the lateral transfer of DOM from land to ocean will occur and has the potential to greatly impact coastal carbon cycling

    Riverine Discharge and Phytoplankton Biomass Control Dissolved and Particulate Organic Matter Dynamics over Spatial and Temporal Scales in the Neuse River Estuary, North Carolina

    Get PDF
    Estuaries function as important transporters, transformers, and producers of organic matter (OM). Along the freshwater to saltwater gradient, the composition of OM is influenced by physical and biogeochemical processes that change spatially and temporally, making it difficult to constrain OM in these ecosystems. In addition, many of the environmental parameters (temperature, precipitation, riverine discharge) controlling OM are expected to change due to climate change. To better understand the environmental drivers of OM quantity (concentration) and quality (absorbance, fluorescence), we assessed both dissolved OM (DOM) and particulate OM (POM) spatially, along the freshwater to saltwater gradient and temporally, for a full year. We found seasonal differences in salinity throughout the estuary due to elevated riverine discharge during the late fall to early spring, with corresponding changes to OM quantity and quality. Using redundancy analysis, we found DOM covaried with salinity (adjusted r2 = 0.35, 0.41 for surface and bottom), indicating terrestrial sources of DOM in riverine discharge were the dominant DOM sources throughout the estuary, while POM covaried with environmental indictors of terrestrial sources (turbidity, adjusted r2 = 0.16, 0.23 for surface and bottom) as well as phytoplankton biomass (chlorophyll-a, adjusted r2 = 0.25, 0.14 for surface and bottom). Responses in OM quantity and quality observed during the period of elevated discharge were similar to studies assessing OM quality following extreme storm events suggesting that regional changes in precipitation, as predicted by climate change, will be as important in changing the estuarine OM pool as episodic storm events in the future

    Lingering Carbon Cycle Effects of Hurricane Matthew in North Carolina's Coastal Waters

    Get PDF
    In 2016, Hurricane Matthew accounted for 25% of the annual riverine C loading to the Neuse River Estuary-Pamlico Sound, in eastern North Carolina. Unlike inland watersheds, dissolved organic carbon (DOC) was the dominant component of C flux from this coastal watershed and stable carbon isotope and chromophoric dissolved organic matter evidence indicated the estuary and sound were dominated by wetland-derived terrigenous organic matter sources for several months following the storm. Persistence of wetland-derived DOC enabled its degradation to carbon dioxide (CO2), which was supported by sea-to-air CO2 fluxes measured in the sound weeks after the storm. Under future increasingly extreme weather events such as Hurricane Matthew, and most recently Hurricane Florence (September 2018), degradation of terrestrial DOC in floodwaters could increase flux of CO2 from estuaries and coastal waters to the atmosphere

    Extreme weather events modulate processing and export of dissolved organic carbon in the Neuse River Estuary, NC

    Get PDF
    As the interface between riverine and coastal systems, estuaries play a key role in receiving, transporting, and processing terrestrial organic carbon prior to export to downstream coastal systems. Estuaries can switch from terrestrial organic carbon reactors under low river flow to pipelines under high flow, but it remains unclear how estuarine terrestrial organic carbon processing responds to the full spectrum of discharge conditions, which are bracketed by these high and low discharge events. The amount of terrestrial dissolved organic carbon and colored dissolved organic matter imported, processed, and exported was assessed for riverine discharge events spanning from the 4th to 99th flow quantiles in the Neuse River Estuary, North Carolina, USA using spatially and temporally (July 2015–December 2016) resolved measurements. The extent of dissolved organic matter processing in the estuary under various flow conditions was estimated using a non-steady state box model to calculate estuary-wide terrestrial dissolved organic carbon and colored dissolved organic matter source & sink terms. Under mid-range riverine discharge conditions (4th to 89th flow quantiles), the Neuse River Estuary was a sink for terrestrial dissolved organic carbon, retaining and/or processing (i.e., flocculation; photochemical and microbial degradation) on average ∼29% of terrestrial dissolved organic carbon. Following floods due to extreme precipitation events (99th flow quantile), however, over 99% of the terrestrial dissolved organic carbon loaded from the riverine end-member was exported directly to the downstream coastal system. Following such extreme weather events, the estuary acts as a pipeline for direct export of terrestrial dissolved organic carbon, drastically altering the amount and quality of dissolved organic carbon loaded to downstream coastal systems. This has important implications under future climate scenarios, where extreme weather events are expected to increase

    Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift

    Get PDF
    Coastal North Carolina, USA, has experienced three extreme tropical cyclone-driven flood events since 1999, causing catastrophic human impacts from flooding and leading to major alterations of water quality, biogeochemistry, and ecological conditions. The apparent increased frequency and magnitudes of such events led us to question whether this is just coincidence or whether we are witnessing a regime shift in tropical cyclone flooding and associated ecosystem impacts. Examination of continuous rainfall records for coastal NC since 1898 reveals a period of unprecedentedly high precipitation since the late-1990’s, and a trend toward increasingly high precipitation associated with tropical cyclones over the last 120 years. We posit that this trend, which is consistent with observations elsewhere, represents a recent regime shift with major ramifications for hydrology, carbon and nutrient cycling, water and habitat quality and resourcefulness of Mid-Atlantic and possibly other USA coastal regions

    Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: implications for biogeochemical cycling and water quality in a stormier world

    Get PDF
    Coastal North Carolina (USA) has experienced 35 tropical cyclones over the past 2 decades; the frequency of these events is expected to continue in the foreseeable future. Individual storms had unique and, at times, significant hydrologic, nutrient-, and carbon (C)-loading impacts on biogeochemical cycling and phytoplankton responses in a large estuarine complex, the Pamlico Sound (PS) and Neuse River Estuary (NRE). Major storms caused up to a doubling of annual nitrogen and tripling of phosphorus loading compared to non-storm years; magnitudes of loading depended on storm tracks, forward speed, and precipitation in NRE-PS watersheds. With regard to C cycling, NRE-PS was a sink for atmospheric CO2 during dry, storm-free years and a significant source of CO2 in years with at least one storm, although responses were storm-specific. Hurricane Irene (2011) mobilized large amounts of previously-accumulated terrigenous C in the watershed, mainly as dissolved organic carbon, and extreme winds rapidly released CO2 to the atmosphere. Historic flooding after Hurricanes Joaquin (2015) and Matthew (2016) provided large inputs of C from the watershed, modifying the annual C balance of NRE-PS and leading to sustained CO2 efflux for months. Storm type affected biogeochemical responses as C-enriched floodwaters enhanced air–water CO2 exchange during ‘wet’ storms, while CO2 fluxes during ‘windy’ storms were largely supported by previously-accumulated C. Nutrient loading and flushing jointly influenced spatio-temporal patterns of phytoplankton biomass and composition. These findings suggest the importance of incorporating freshwater discharge and C dynamics in nutrient management strategies for coastal ecosystems likely to experience a stormier future

    Recent increases of rainfall and flooding from tropical cyclones (TCs) in North Carolina (USA): implications for organic matter and nutrient cycling in coastal watersheds

    Get PDF
    Coastal North Carolina experienced 36 tropical cyclones (TCs), including three floods of historical significance in the past two decades (Hurricanes Floyd-1999, Matthew-2016 and Florence-2018). These events caused catastrophic flooding and major alterations of water quality, fisheries habitat and ecological conditions of the Albemarle-Pamlico Sound (APS), the second largest estuarine complex in the United States. Continuous rainfall records for coastal NC since 1898 reveal a period of unprecedented high precipitation storm events since the late-1990s. Six of seven of the “wettest” storm events in this > 120-year record occurred in the past two decades, identifying a period of elevated precipitation and flooding associated with recent TCs. We examined storm-related freshwater discharge, carbon (C) and nutrient, i.e., nitrogen (N) and phosphorus (P) loadings, and evaluated contributions to total annual inputs in the Neuse River Estuary (NRE), a major sub-estuary of the APS. These contributions were highly significant, accounting for > 50% of annual loads depending on antecedent conditions and storm-related flooding. Depending on the magnitude of freshwater discharge, the NRE either acted as a “processor” to partially assimilate and metabolize the loads or acted as a “pipeline” to transport the loads to the APS and coastal Atlantic Ocean. Under base-flow, terrestrial sources dominate riverine carbon. During storm events these carbon sources are enhanced through the inundation and release of carbon from wetlands. These findings show that event-scale discharge plays an important and, at times, predominant role in C, N and P loadings. We appear to have entered a new climatic regime characterized by more frequent extreme precipitation events, with major ramifications for hydrology, cycling of C, N and P, water quality and habitat conditions in estuarine and coastal waters

    Mudança organizacional: uma abordagem preliminar

    Full text link
    corecore