435 research outputs found

    Achromobacter buckle infection diagnosed by a 16S rDNA clone library analysis : a case report

    Get PDF
    Background: In clinical settings, bacterial infections are usually diagnosed by isolation of colonies after laboratory cultivation followed by species identification with biochemical tests. However, biochemical tests result in misidentification due to similar phenotypes of closely related species. In such cases, 16S rDNA sequence analysis is useful. Herein, we report the first case of an Achromobacter-associated buckle infection that was diagnosed by 16S rDNA sequence analysis. This report highlights the significance of Achromobacter spp. in device-related ophthalmic infections. Case presentation: A 56-year-old woman, who had received buckling surgery using a silicone solid tire for retinal detachment eighteen years prior to this study, presented purulent eye discharge and conjunctival hyperemia in her right eye. Buckle infection was suspected and the buckle material was removed. Isolates from cultures of preoperative discharge and from deposits on the operatively removed buckle material were initially identified as Alcaligenes and Corynebacterium species. However, sequence analysis of a 16S rDNA clone library using the DNA extracted from the deposits on the buckle material demonstrated that all of the 16S rDNA sequences most closely matched those of Achromobacter spp. We concluded that the initial misdiagnosis of this case as an Alcaligenes buckle infection was due to the unreliability of the biochemical test in discriminating Achromobacter and Alcaligenes species due to their close taxonomic positions and similar phenotypes. Corynebacterium species were found to be contaminants from the ocular surface. Conclusions: Achromobacter spp. should be recognized as causative agents for device-related ophthalmic infections. Molecular species identification by 16S rDNA sequence analysis should be combined with conventional cultivation techniques to investigate the significance of Achromobacter spp. in ophthalmic infections

    Kerr/CFT correspondence and five-dimensional BMPV black holes

    Full text link
    We apply a recently proposed Kerr/CFT correspondence to extremal supersymmetric five-dimensional charged spinning black holes, constructed by Breckenridge, Myers, Peet and Vafa. By computing the central charge of the dual CFT and Frolov-Thorne temperature, Cardy's formula succeeds in reproducing Bekenstein-Hawking area law.Comment: 10 pages, typos corrected, references added, explanation improved and a missing factor 2 found; v3: a reference added, minor change

    Pancreatic β Cell–specific Expression of  Thioredoxin, an Antioxidative and Antiapoptotic Protein, Prevents Autoimmune and Streptozotocin-induced Diabetes

    Get PDF
    The cytotoxicity of reactive oxygen intermediates (ROIs) has been implicated in the destruction of pancreatic β cells in insulin-dependent diabetes mellitus (IDDM). Thioredoxin (TRX), a redox (reduction/oxidation)-active protein, has recently been shown to protect cells from oxidative stress and apoptosis. To elucidate the roles of oxidative stress in the development of autoimmune diabetes in vivo, we produced nonobese diabetic transgenic mice that overexpress TRX in their pancreatic β cells. In these transgenic mice, the incidence of diabetes was markedly reduced, whereas the development of insulitis was not prevented. Moreover, induction of diabetes by streptozotocin, an ROI-generating agent, was also attenuated by TRX overexpression in β cells. This is the first direct demonstration that an antioxidative and antiapoptotic protein protects β cells in vivo against both autoimmune and drug-induced diabetes. Our results strongly suggest that oxidative stress plays an essential role in the destruction of β cells by infiltrating inflammatory cells in IDDM
    corecore