77 research outputs found
Fabrication of dual Z-scheme photocatalyst via coupling of BiOBr/Ag/AgCl heterojunction with P and S co-doped g-C3N4 for efficient phenol degradation
Advances in noble metal mediated Z-scheme photocatalytic system have ushered in a climax on environmental remediation. Herein, graphitic carbon nitride (GCN) and phosphorus sulphur co-doped graphitic carbon nitride (PSCN) were synthesized via calcination process. GCN, PSCN and Z-scheme visible light driven (VLD) ternary BiOBr/PSCN/Ag/AgCl nanophotocatalyst were characterized by X-ray diffraction pattern (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–visible diffuse reflectance spectra (UV–vis DRS). BiOBr/PSCN/Ag/AgCl nanocomposite exhibited superior visible light driven photocatalytic ability as compared to pristine PSCN, AgCl and BiOBr towards degradation of phenol. The results explicated promising photocatalytic activity along with space separation of photocarriers caused via formation of BiOBr/PSCN/Ag/AgCl Z-scheme heterojunction. The visible light absorption efficacy of BiOBr/PSCN/Ag/AgCl photocatalyst was confirmed by photoluminescence (PL) spectra. Finally, recycling experiments were explored for the mechanistic detailing of phenol photodegradation employing BiOBr/PSCN/Ag/AgCl photocatalyst. After seven successive cycles photodegradation efficacy of photocatalyst was reduced to 90% from 98%. Proposed mechanism of BiOBr/PSCN/Ag/AgCl nanophotocatalyst for degradation of phenol was discussed. OH and O2− radicals were main reactive species responsible for photocatalytic phenol degradation
Magnetically separable ZnO/ZnFe204 and ZnO/CoFe204 photocatalysis supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes
Advanced oxidation processes (AOPs) counting heterogeneous photocatalysis has confirmed as one of the preeminent method for waste water remediation. In the present work, we have successfully fabricated novel visible-light-driven nitrogen-doped graphene (NG) supported magnetic ZnO/ZnFe2O4 (ZnO/ZF/NG) and ZnO/CoFe2O4 (ZnO/CF/NG) nanocomposites. ZnO synthesized via direct precipitation method. Hydrothermal method was used for the preparation of nitrogen-doped graphene supported magnetic ZnO/ZF (ZnO/ZnFe2O4) and ZnO/CF (ZnO/CoFe2O4) nanocomposites. The procured materials were scrutinized by assorted characterizations to acquire information on their chemical composition, crystalline structure and photosensitive properties. The absorption and photocatalytic performance of photocatalysts were studied via UV–Visible spectra. Photodegradation performance of the synthesized nanocomposites was estimated toward mineralization of methyl orange (MO) and malachite green (MG) dyes in aqueous solution. The high surface area of ZnO/ZF/NG and ZnO/CF/NG was suitable for adsorptive removal of MO and MG dyes. The photodegradation performance of heterojunction photocatalysts was superior to bare photocatalyst in 140 min under visible-light irradiation. Spectrophotometer, GC–MS (Gas chromatography–mass spectrometry) elucidation was carried out to expose the possible intermediates formed. Both ZnO/ZF/NG and ZnO/CF/NG were rapidly isolated from the aqueous phase by applying an external magnetic field in 20 sec and 2 min, respectively. The photocatalytic performance and stability of ZnO/ZF/NG and ZnO/CF/NG nanocomposites were confirmed by conducting 10 consecutive regeneration cycles. Owing to recyclability of ZnO/ZF/NG and ZnO/CF/NG, these heterogeneous nanocomposites might be used as cost-effective for treatment of discarded water. The observations endorse that the synthesized ternary heterogeneous nanocomposites facilitates wastewater decontamination using photocatalytic technology
Polymerization of Acrylamide N-methylene Lactic and Glycolic Acid
الهدف من الدراسة هو تصنيع بوليمرات جديدة (أكريلاميد N- ميثيلين اللاكتيك وحمض الجليكوليك) المشتقة من أحماض الهيدروكسي الطبيعية من خلال البلمرة الجذرية لمادة الأكريلاميد المستبدلة بـ N ، لاستكشاف التحول الكيميائي لبولي أكريلاميد ، وللتحقق من بعض الخصائص الفيزيائية والكيميائية لمادة البولي أكريلاميد. البوليمرات الناتجة. بالإضافة إلى ذلك ، يهدف البحث إلى تحديد التطبيقات الواعدة لهذه البوليمرات. لتجميع البوليمرات المحبة للماء الحساسة لدرجة الحموضة. ومن ثم ، تم إنشاء أكريلاميدو-إن-ميثيلين جليكوليك وأحماض اللبنيك أكريلاميدو-إن-ميثيلين لأول مرة باستخدام أحماض الهيدروكسي الطبيعية كأساس. تم التعرف على هياكل هذه المونومرات المركبة من خلال التحليل الطيفي للأشعة تحت الحمراء وطرق التحليل الفيزيائية والكيميائية المختلفة. تمت دراسة حركية البلمرة الجذرية للأكريلاميدو- N- ميثيلين جليكوليك وأحماض اللبنيك أكريلاميدو- N- ميثيلين في المحاليل المائية. أثبتت الاختبارات البيولوجية التي أجريت على حمض اللاكتيك بولي أكريلاميدو-إن-ميثيلين إمكاناته كمحفز لنمو النبات.In this research work, the novel polymer base on acrylamide N-methylene lactic and glycolic acid was synthesized and its structural performances were identified by the IR, 1H NMR and 13C NMR spectroscopic investigations. The influencing factors and kinetics of polymerization, viscosity performance were studied and quantum chemical calculations were used to identify the correlation between the structure and properties. It was determined that the polymerization rate of the examined monomers in an aqueous solution, in the presence of DAA, adheres to the standard rules for radical polymerization of acrylamide monomers in solution. An investigation into the pH solution's impact on the kinetics of radical polymerization of acrylamido-N-methylene glycolic and acrylamido-N-methylene lactic acids revealed an extreme dependence with a minimum in a neutral medium. It was found the linear correlation between pH and viscosity. The physical and chemical performance of this polymer depends on the structural parameters related the results of quantum chemical calculation. Biological tests conducted on polyacrylamido-N-methylene lactic acid indicated its potential as a plant growth stimulator. The polymeric form of lactic acid was found to enhance the growth of Dustlik variety wheat seedlings by 40% more efficiently than lactic acid alone
Adsorption and desorption processes of toxic heavy metals, regeneration and reusability of spent adsorbents: Economic and environmental sustainability approach
This research article was published in Elsevier volume 329,2024A growing number of variables, including rising population, water scarcity, growth in the economy, and the existence of harmful heavy metals in the water supply, are contributing to the increased demand for wastewater treatment on a global scale. One of the innovative water treatment technologies is the adsorptive removal of heavy metals through the application of natural and engineered adsorbents. However, adsorption currently has setbacks that prevent its wider application for heavy metals sequestration from aquatic environments using various adsorbents, including difficulty in selecting suitable desorption eluent to recover adsorbed heavy metals and regeneration techniques to recycle the spent adsorbents for further use and safe disposal. Therefore, the recovery of adsorbed heavy metal ions and the ability to reuse the spent adsorbents is one of the economic and environmental sustainability approaches. This study presents a state-of-the-art critical review of different desorption agents that could be used to retrieve heavy metals and regenerate the spent adsorbents for further adsorption-desorption processes. Additionally, an attempt was made to discuss and summarize some of the independent factors influencing heavy metals desorption, recovery, and adsorbent regeneration. Furthermore, isotherm and kinetic modeling have been summarized to provide insights into the adsorption-desorption mechanisms of heavy metals. Finally, the review provided future perspectives to provide room for researchers and industry players who are interested in heavy metals desorption, recovery, and spent adsorbents recycling to reduce the high cost of adsorbents reproduction, minimize secondary waste generation, and thereby provide substantial economic and environmental benefits
Visible-Light-driven Photocatalytic Properties of Copper(I) Oxide (Cu2O) and Its Graphene-based Nanocomposites
In this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of different sizes, while the morphology of Cu2O crystals was not affected. The synthesized Cu2O crystal samples were used as photocatalysts for methyl orange (MO) dye decomposition, as a model molecule, to evaluate the photocatalytic activities. However, under 200 watts of a visible light source, there are four samples with and without graphene-based nanocomposite of Cu2O NPs. The results showed that, compared with roughly spherical, irregular but thick plates, brick and small granule spheres shaped Cu2O nanoparticles provided better activity. The Cu2O sample with irregular but thick platelet-like shapes, having an average particle size of 0.53 µm, exhibited excellent photocatalytic activity (99.08% degradation). In addition, by reducing the size of Cu2O particles and preparing their graphene composition, one can fabricate a sample (Cu2-Cu2Gr) with the highest efficiency which has significantly better photocatalytic activity in comparison to the others. This work represents an innovative strategy for pre-the-case production of nanomaterials with shapes and sizes, that is, Cu2O crystals, with excellent photocatalytic activity through compositing with graphen
Systematic review on applicability of magnetic iron-oxides integrated photocatalysts for degradation of organic pollutants in water
Owing to biocompatibility, abundance, and low cost, magnetic iron oxides are well suited for the design of efficient and magnetically separable photocatalysts for water treatment. This review presents a detailed survey of magnetic iron oxide–integrated photocatalysts (MIOIPs), in which we have discussed essential conditions needed for designing of efficient MIOIPs for water purification. The synthesis methods and detailed experimental setups for fabrication of MIOIPs were discussed, and the integration manners of iron oxides (Fe2O3, Fe3O4, FeO, and ferrites) with binary, ternary, and quaternary non-magnetic photocatalysts have been categorized. The mechanistic view of enhanced photocatalytic activity caused by different MIOIPs under various light sources was also elaborately argued. The role of various reactive species in photocatalytic oxidative degrading of organic pollutants was investigated. Altogether, this review article has compressively considered and discussed various signs of advancements made toward the synthesis of MIOIPs and their stability, recyclability, and catalytic efficacy for wastewater treatment
Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review
Semiconductor photocatalyst mediated advanced oxidation processes are regarded as one of the most efficient technologies to mitigate organic pollutants in water. However, poor activity under visible light and the recombination of photogenerated electron and hole pairs hinder large scale applicability of semiconductor photocatalysts for water purification. The modification of semiconductor photocatalysts with carbon quantum dots (CQDs) is of high importance due to low toxicity, aqueous stability, enhanced surface area, economic feasibility, good biocompatibility and chemical inertness of CQDs. In this review, we highlight strategies to improve the activity of conventional semiconductor photocatalysts via coupling with CQDs. The enhanced photocatalytic activity of CQD modified narrow and wide band gap photocatalysts is due mainly to up-conversion photoluminescence (UPCL) and the electron reservoir properties of CQDs, while in the case of Z-scheme photocatalysts CQDs act as an electron mediator. Finally, a conclusive outlook and suggested research directions are provided to address challenges such as the inadequate separation of photoinduced charge carriers
- …