594 research outputs found

    Panoramic optical and near-infrared SETI instrument: prototype design and testing

    Get PDF
    The Pulsed All-sky Near-infrared Optical Search for ExtraTerrestrial Intelligence (PANOSETI) is an instrument program that aims to search for fast transient signals (nano-second to seconds) of artificial or astrophysical origin. The PANOSETI instrument objective is to sample the entire observable sky during all observable time at optical and near-infrared wavelengths over 300 - 1650 nm1^1. The PANOSETI instrument is designed with a number of modular telescope units using Fresnel lenses (\sim0.5m) arranged on two geodesic domes in order to maximize sky coverage2^2. We present the prototype design and tests of these modular Fresnel telescope units. This consists of the design of mechanical components such as the lens mounting and module frame. One of the most important goals of the modules is to maintain the characteristics of the Fresnel lens under a variety of operating conditions. We discuss how we account for a range of operating temperatures, humidity, and module orientations in our design in order to minimize undesirable changes to our focal length or angular resolution.Comment: 12 pages, 8 figures, 1 tabl

    Fossil crinoid studies

    Get PDF
    40 p., 17 fig.http://paleo.ku.edu/contributions.htm

    Identifying Factors to Improve Oral Cancer Screening Uptake: A Qualitative Study

    Get PDF
    Aims: To engage with high risk groups to identify knowledge and awareness of oral cancer signs and symptoms and the factors likely to contribute to improved screening uptake. Methods: Focus group discussions were undertaken with 18 males; 40+ years of age; smokers and/or drinkers (15+ cigarettes per day and/or 15+ units of alcohol per week), irregular dental attenders living in economically deprived areas of Teesside. Results: There was a striking reported lack of knowledge and awareness of oral cancer and its signs and symptoms among the participants. When oral/mouth cancer leaflets produced by Cancer Research UK were presented to the participants, they claimed that they would seek help on noticing such a condition. There was a preference to seek help from their general practitioner rather than their dentist due to perceptions that a dentist is ‘inaccessible ’ on a physical and psychological level, costly, a ‘tooth specialist ’ not a ‘mouth specialist’, and also not able to prescribe medication and make referrals to specialists. Interestingly, none of the 18 participants who were offered a free oral cancer examination at a dental practice took up this offer. Conclusions: The uptake of oral cancer screening may be improved by increasing knowledge of the existence and signs and symptoms of oral cancer. Other factors that may increase uptake are increased awareness of the role of dentists in diagnosing oral cancer, promotion of oral cancer screening by health professionals during routine health checks, and the use of a ‘‘health’ ’ screening setting as opposed to a ‘‘dental’ ’ setting for such checks

    Angular momentum and an invariant quasilocal energy in general relativity

    Full text link
    Owing to its transformation property under local boosts, the Brown-York quasilocal energy surface density is the analogue of E in the special relativity formula: E^2-p^2=m^2. In this paper I will motivate the general relativistic version of this formula, and thereby arrive at a geometrically natural definition of an `invariant quasilocal energy', or IQE. In analogy with the invariant mass m, the IQE is invariant under local boosts of the set of observers on a given two-surface S in spacetime. A reference energy subtraction procedure is required, but in contrast to the Brown-York procedure, S is isometrically embedded into a four-dimensional reference spacetime. This virtually eliminates the embeddability problem inherent in the use of a three-dimensional reference space, but introduces a new one: such embeddings are not unique, leading to an ambiguity in the reference IQE. However, in this codimension-two setting there are two curvatures associated with S: the curvatures of its tangent and normal bundles. Taking advantage of this fact, I will suggest a possible way to resolve the embedding ambiguity, which at the same time will be seen to incorporate angular momentum into the energy at the quasilocal level. I will analyze the IQE in the following cases: both the spatial and future null infinity limits of a large sphere in asymptotically flat spacetimes; a small sphere shrinking toward a point along either spatial or null directions; and finally, in asymptotically anti-de Sitter spacetimes. The last case reveals a striking similarity between the reference IQE and a certain counterterm energy recently proposed in the context of the conjectured AdS/CFT correspondence.Comment: 54 pages LaTeX, no figures, includes brief summary of results, submitted to Physical Review

    Last Millennium Hurricane Activity Linked to Endogenous Climate Variability

    Get PDF
    Despite increased Atlantic hurricane risk, projected trends in hurricane frequency in the warming climate are still highly uncertain, mainly due to short instrumental record that limits our understanding of hurricane activity and its relationship to climate. Here we extend the record to the last millennium using two independent estimates: a reconstruction from sedimentary paleohurricane records and a statistical model of hurricane activity using sea surface temperatures (SSTs). We find statistically significant agreement between the two estimates and the late 20th century hurricane frequency is within the range seen over the past millennium. Numerical simulations using a hurricane-permitting climate model suggest that hurricane activity was likely driven by endogenous climate variability and linked to anomalous SSTs of warm Atlantic and cold Pacific. Volcanic eruptions can induce peaks in hurricane activity, but such peaks would likely be too weak to be detected in the proxy record due to large endogenous variability

    Isospin breaking corrections to nucleon form factors in the constituent quark model

    Full text link
    We examine isospin breaking in the nucleon wave functions due to the udu - d quark mass difference and the Coulomb interaction among the quarks, and their consequences on the nucleon electroweak form factors in a nonrelativistic constituent quark model. The mechanically induced isospin breaking in the nucleon wave functions and electroweak form factors are exactly evaluated in this model. We calculate the electromagnetically induced isospin admixtures by using first-order perturbation theory, including the lowest-lying resonance with nucleon quantum numbers but isospin 3/2. We find a small (1%\leq 1\%), but finite correction to the anomalous magnetic moments of the nucleon stemming almost entirely from the quark mass difference, while the static nucleon axial coupling remains uncorrected. Corrections of the same order of magnitude appear in charge, magnetic, and axial radii of the nucleon. The correction to the charge radius in this model is primarily isoscalar, and may be of some significance for the extraction of the strangeness radius from e.g. elastic forward angle parity violating electron-proton asymmetries, or elastic 4He(e,e){}^4He({\vec e},e') experiments.Comment: 15 pp(22 as preprint), revtex, 3 uuencoded figs at end of this fil

    Panoramic SETI: on-sky results from prototype telescopes and instrumental design

    Get PDF
    The Panoramic SETI (Search for Extraterrestrial Intelligence) experiment (PANOSETI) aims to detect and quantify optical transients from nanosecond to second precision over a large field-of-view (∼4,450 square-degrees). To meet these challenging timing and wide-field requirements, the PANOSETI experiment will use two assemblies of ∼45 telescopes to reject spurious signals by coincidence detection, each one comprising custom-made fast photon-counting hardware combined with (f/1.32) focusing optics. Preliminary on-sky results from pairs of PANOSETI prototype telescopes (100 sq.deg.) are presented in terms of instrument performance and false alarm rates. We found that a separation of >1 km between telescopes surveying the same field-of-view significantly reduces the number of false positives due to nearby sources (e.g., Cherenkov showers) in comparison to a side- by-side configuration of telescopes. Design considerations on the all-sky PANOSETI instrument and expected field-of-views are reported

    Model Channel Ion Currents in NaCl - SPC/E Solution with Applied-Field Molecular Dynamics

    Get PDF
    Using periodic boundary conditions and a constant applied field, we have simulated current flow through an 8.125 Angstrom internal diameter, rigid, atomistic channel with polar walls in a rigid membrane using explicit ions and SPC/E water. Channel and bath currents were computed from ten 10-ns trajectories for each of 10 different conditions of concentration and applied voltage. An electric field was applied uniformly throughout the system to all mobile atoms. On average, the resultant net electric field falls primarily across the membrane channel, as expected for two conductive baths separated by a membrane capacitance. The channel is rarely occupied by more than one ion. Current-voltage relations are concentration-dependent and superlinear at high concentrations.Comment: Accepted for publication in Biophysical Journa
    corecore