128 research outputs found
The enigma of the inversion: a study in the dialectics of Hegel and Marx
The thesis is a contribution to the understanding of the relationship of the dialectical thought and method of G. W. F. Hegel and K. Marx. The aim of the thesis is to ascertain what the relation and the difference between the contrary forms, of the idealist and the materialist dialectic, actually is. The thesis consequently attempts to make sense of Marxâs view that his application of the dialectical method was not only different from but also the âdirect oppositeâ of his idealist predecessor. This theme, itself the source for the enigmatic nature of the inversion, is developed by ascertaining some of the core elements that lie behind and underpin Marxâs own comment; that the rational kernel of Hegelâs mystical form of dialectic could be discovered if it was âturned right side up againâ.
The thesis also explored the relationship between the early Marxâs critique of Hegel, contained in the 1844 Paris Manuscripts, with the later Marxâs comments on his view of the relation of his dialectic to Hegelâs. As such, the thesis argues that there is both a continuity and a development in Marxâs critical attitude to Hegelâs dialectical thought.
The core elements of the rational kernel of Hegelâs dialectic for Marx lies, as the thesis will argue, in the Hegelian account of the general form of working of the dialectic, and in Hegelâs explication of the laws of dialectics. The thesis thus explore the intimate relation of these two interconnected themes from the point of view of Hegelâs systematic idealism, and in Marxâs materialist application of these rational elements to his critique of political economy.
This involves endeavouring to elucidate, both the nature of a dialectical account of contradiction, and the related explanation of nomological activity or law from a dialectical perspective. The thesis also attempts to explore the fundamental contrast of the materialist from the idealist elucidation of these core elements
2-(4H-1,3-Benzoxazin-2-yl)phenol
The title compound, C14H11NO2, features an essentially planar molÂecule, the r.m.s. deviation for the 17 non-H atoms being 0.035â
Ă
. This conformation is stabilized by an intraÂmolecular OâHâŻN hydrogen bond that results in the formation of an S(6) ring. In the crystal structure, methylÂeneâhydrÂoxy CâHâŻO contacts result in a supraÂmolecular chain aligned along the b axis
Clinical Symptoms of Skin, Nails, and Joints Manifest Independently in Patients with Concomitant Psoriasis and Psoriatic Arthritis
This study correlated assessment tools for evaluating the severity of skin, nail, and joint symptoms in patients with psoriasis (Pso) and psoriatic arthritis (PsA). Adults with plaque Pso (with or without PsA) were enrolled from four U.S. institutions. Patients were evaluated using a novel 10-area Linear Psoriasis Area and Severity Index (XL-PASI), Psoriatic Arthritis Assessment (PsAA), Psoriatic Arthritis Screening and Evaluation Questionnaire (PASE), Nail Assessment (NA) and Joint Assessment (JA) tools, Psoriasis Weighted Extent and Severity Index (PWESI), and Lattice Physician Global Assessment (LS-PGA). Correlations between assessment tools and individual items in the assessment tools were performed. Data from 180 patients (55 with PsA) were analyzed. Highest correlations between tools (râ=â0.77â0.88) were between the XL-PASI, PWESI and LS-PGA. Individual items in the XL-PASI correlated with items in the PWESI for extent skin symptoms, but not for all body areas. Overall, correlations were seen between hands and feet, between face and scalp, and between buttocks, chest, and back. Only low correlation was seen between items assessing joint symptoms with items assessing skin symptoms. These data support the notion that the complex phenotype of psoriatic disease requires instruments that assess the severity of skin, nails, and joints separately
The Ursinus Weekly, March 6, 1969
Officers inducted; Emig emphasizes new responsibility âą American dream, brotherhood highlight Festival of the Arts âą USGA officers interviewed; Communication gap stressed âą Placement interviews scheduled âą 200 attend Lorelei; Fischer crowned king âą Semi-formal ball highlights junior-senior weekend âą Editorial: Potpourri - Or, Could this ever happen here? âą State set to punish protestors; Laws threaten civil liberties âą Letters to the editor âą Remark âą Lantern literary lapse termed titanic bomb âą Staying out of uniform: A practical guide for the Ursinus male, part I âą Whose risk? âą Columnist proposes solution to UC\u27s dearth of black students âą Albright draws Fifth Dimension âą Racism symposium set for March 20 with Lincoln Univ. âą Dorm lounges opened; Slacks rule slackened âą Rice discusses status for Phi Beta Kappa âą Ursinus grapplers rally to win over Drexel, 22-13 âą New gym complex to include pool âą Carson paces Bearettes over Gettysburg âą Badminton team wins six in row âą Trackmen run at Swarthmore and Delaware âą Gillespie hits 37 points to lead Bears over Swarthmore in finale âą Girl swimmers win over Penn and Elizabethtown âą Junior varsity hoopmen finish with 11-6 record âą Dickinson frat system defended âą UC celebrates centennial with unique innovation âą Forum features Howellhttps://digitalcommons.ursinus.edu/weekly/1171/thumbnail.jp
Range-wide sources of variation in reproductive rates of northern spotted owls
We conducted a range-wide investigation of the dynamics of site-level reproductive rate of northern spotted owls using survey data from 11 study areas across the subspecies geographic range collected during 1993â2018. Our analytical approach accounted for imperfect detection of owl pairs and misclassification of successful reproduction (i.e., at least one young fledged) and contributed further insights into northern spotted owl population ecology and dynamics. Both nondetection and state misclassification were important, especially because factors affecting these sources of error also affected focal ecological parameters. Annual probabilities of site occupancy were greatest at sites with successful reproduction in the previous year and lowest for sites not occupied by a pair in the previous year. Site-specific occupancy transition probabilities declined over time and were negatively affected by barred owl presence. Overall, the site-specific probability of successful reproduction showed substantial year-to-year fluctuations and was similar for occupied sites that did or did not experience successful reproduction the previous year. Site-specific probabilities for successful reproduction were very small for sites that were unoccupied the previous year. Barred owl presence negatively affected the probability of successful reproduction by northern spotted owls in Washington and California, as predicted, but the effect in Oregon was mixed. The proportions of sites occupied by northern spotted owl pairs showed steep, near-monotonic declines over the study period, with all study areas showing the lowest observed levels of occupancy to date. If trends continue it is likely that northern spotted owls will become extirpated throughout large portions of their range in the coming decades
Machine learning uncovers the most robust self-report predictors of relationship quality across 43 longitudinal couples studies
Given the powerful implications of relationship quality for health and well-being, a central mission of relationship science is explaining why some romantic relationships thrive more than others. This large-scale project used machine learning (i.e., Random Forests) to 1) quantify the extent to which relationship quality is predictable and 2) identify which constructs reliably predict relationship quality. Across 43 dyadic longitudinal datasets from 29 laboratories, the top relationship-specific predictors of relationship quality were perceived-partner commitment, appreciation, sexual satisfaction, perceived-partner satisfaction, and conflict. The top individual-difference predictors were life satisfaction, negative affect, depression, attachment avoidance, and attachment anxiety. Overall, relationship-specific variables predicted up to 45% of variance at baseline, and up to 18% of variance at the end of each study. Individual differences also performed well (21% and 12%, respectively). Actor-reported variables (i.e., own relationship-specific and individual-difference variables) predicted two to four times more variance than partner-reported variables (i.e., the partnerâs ratings on those variables). Importantly, individual differences and partner reports had no predictive effects beyond actor-reported relationship-specific variables alone. These findings imply that the sum of all individual differences and partner experiences exert their influence on relationship quality via a personâs own relationship-specific experiences, and effects due to moderation by individual differences and moderation by partner-reports may be quite small. Finally, relationship-quality change (i.e., increases or decreases in relationship quality over the course of a study) was largely unpredictable from any combination of self-report variables. This collective effort should guide future models of relationships
Hair Cortisol in Twins : Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes
A. Palotie on työryhmÀn jÀsen.Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables.Peer reviewe
Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchangeâcorrelation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclearâelectronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an âopen teamwareâ model and an increasingly modular design
Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.
Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Variant annotation was supported by software resources provided via the Caché Campus program of the InterSystems GmbH to Alexander Teumer
Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.
Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 Ă 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 Ă 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 Ă 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 Ă 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 Ă 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Communityâs Seventh Framework Programme under grant agreement n8 223175
(HEALTH-F2â2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the âCIHR Team in Familial Risks of Breast
Cancerâ program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the
National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112âthe GAME-ON initiative), the Department
of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reïŹect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products or organizations imply endorsement t by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and M.C.S. is a NHMRC Senior Research Fellow. The OFBCR work was also supported by the Canadian Institutes of Health Research âCIHR Team in Familial Risks of Breast Cancerâ program. The ABCS was funded by the Dutch Cancer Society Grant no. NKI2007-3839 and NKI2009-4363. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). E.S. is supported by NIHR Comprehensive Biomedical Research Centre, Guyâs & St. Thomasâ NHS Foundation Trust in partnership with Kingâs College London, UK. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). I.T. is
supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental l and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR), and the Association for Research against Cancer (ARC). The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital.The CNIO-BCS was supported by the Genome Spain Foundation the Red Temåtica de Investigación Cooperativa en Cåncer and grants from the Asociación Española Contra el Cåncer and the Fondo de Investigación Sanitario PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. D.A. was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The
CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence e data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden WĂŒrttemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), as well as the Department of Internal Medicine , Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation.
The HERPACC was supported by a Grant-in-Aid for ScientiïŹc Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a
Grant-in-Aid for the Third Term Comprehensive 10-Year strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation , by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to N.B), and the Friends of Hannover Medical School (to N.B.). Financial support for KARBAC was provided
through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBCP was ïŹnancially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish
Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation , the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia.
The kConFab Clinical Follow Up Study was funded by the NHMRC (145684, 288704, 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Instituteâs Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the âStichting tegen Kankerâ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association ciation for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects â5 Ă 1000â). The MCBCS was supported by the NIH grants (CA122340, CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19,tel:08/1/35/19./550), Singapore and the National medical Research
Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to A.L.B.D., FUGE-NFR 181600/
V11 to V.N.K. and a Swizz Bridge Award to A.L.B.D.). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen
Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the
Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NLCP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and
Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Mašrit and Hans Rausings Initiative Against Breast Cancer.
KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linnaeus Centre (Contract ID 70867902) ïŹnanced by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (AâSTAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation KC was ïŹnanced by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30
CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCCS was provided by NIH grant R01 CA092447. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the
authors and do not necessarily represent the ofïŹcial views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK
(C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the National Medical Research Council Start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). The recruitment of controls by the Singapore Consortium of Cohort
Studies-Multi-ethnic cohort (SCCS-MEC) was funded by the Biomedical Research Council (grant number: 05/1/21/19/425).
SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. K. J. is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128978), the Breast Cancer Research Foundation , Komen Foundation for the Cure, the Ohio State University
Comprehensive Cancer Center, the Stefanie Spielman Fund for Breast Cancer Research and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting
Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMOKRITOS) has been co-ïŹnanced by the European Union (European Social Fund â ESF) and Greek National
Funds through the Operational Program âEducation and Life-long Learningâ of the National Strategic Reference Framework (NSRF)âResearch Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The
UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. Funding to pay the
Open Access publication charges for this article was provided by the Wellcome Trust.This is the advanced access published version distributed under a Creative Commons Attribution License 2.0, which can also be viewed on the publisher's webstie at: http://hmg.oxfordjournals.org/content/early/2014/07/04/hmg.ddu311.full.pdf+htm
- âŠ