67 research outputs found

    Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks

    Full text link
    As social media becomes a hotbed for the spread of misinformation, the crucial task of rumor detection has witnessed promising advances fostered by open-source benchmark datasets. Despite being widely used, we find that these datasets suffer from spurious correlations, which are ignored by existing studies and lead to severe overestimation of existing rumor detection performance. The spurious correlations stem from three causes: (1) event-based data collection and labeling schemes assign the same veracity label to multiple highly similar posts from the same underlying event; (2) merging multiple data sources spuriously relates source identities to veracity labels; and (3) labeling bias. In this paper, we closely investigate three of the most popular rumor detection benchmark datasets (i.e., Twitter15, Twitter16 and PHEME), and propose event-separated rumor detection as a solution to eliminate spurious cues. Under the event-separated setting, we observe that the accuracy of existing state-of-the-art models drops significantly by over 40%, becoming only comparable to a simple neural classifier. To better address this task, we propose Publisher Style Aggregation (PSA), a generalizable approach that aggregates publisher posting records to learn writing style and veracity stance. Extensive experiments demonstrate that our method outperforms existing baselines in terms of effectiveness, efficiency and generalizability.Comment: Accepted to ECML-PKDD 202

    HiPA: Enabling One-Step Text-to-Image Diffusion Models via High-Frequency-Promoting Adaptation

    Full text link
    Diffusion models have revolutionized text-to-image generation, but their real-world applications are hampered by the extensive time needed for hundreds of diffusion steps. Although progressive distillation has been proposed to speed up diffusion sampling to 2-8 steps, it still falls short in one-step generation, and necessitates training multiple student models, which is highly parameter-extensive and time-consuming. To overcome these limitations, we introduce High-frequency-Promoting Adaptation (HiPA), a parameter-efficient approach to enable one-step text-to-image diffusion. Grounded in the insight that high-frequency information is essential but highly lacking in one-step diffusion, HiPA focuses on training one-step, low-rank adaptors to specifically enhance the under-represented high-frequency abilities of advanced diffusion models. The learned adaptors empower these diffusion models to generate high-quality images in just a single step. Compared with progressive distillation, HiPA achieves much better performance in one-step text-to-image generation (37.3 β†’\rightarrow 23.8 in FID-5k on MS-COCO 2017) and 28.6x training speed-up (108.8 β†’\rightarrow 3.8 A100 GPU days), requiring only 0.04% training parameters (7,740 million β†’\rightarrow 3.3 million). We also demonstrate HiPA's effectiveness in text-guided image editing, inpainting and super-resolution tasks, where our adapted models consistently deliver high-quality outputs in just one diffusion step. The source code will be released

    Graph Neural Network-Based Anomaly Detection in Multivariate Time Series

    Full text link
    Given high-dimensional time series data (e.g., sensor data), how can we detect anomalous events, such as system faults and attacks? More challengingly, how can we do this in a way that captures complex inter-sensor relationships, and detects and explains anomalies which deviate from these relationships? Recently, deep learning approaches have enabled improvements in anomaly detection in high-dimensional datasets; however, existing methods do not explicitly learn the structure of existing relationships between variables, or use them to predict the expected behavior of time series. Our approach combines a structure learning approach with graph neural networks, additionally using attention weights to provide explainability for the detected anomalies. Experiments on two real-world sensor datasets with ground truth anomalies show that our method detects anomalies more accurately than baseline approaches, accurately captures correlations between sensors, and allows users to deduce the root cause of a detected anomaly.Comment: Accepted at AAAI Conference on Artificial Intelligence (AAAI), 202

    Prompt-Based Zero- and Few-Shot Node Classification: A Multimodal Approach

    Full text link
    Multimodal data empowers machine learning models to better understand the world from various perspectives. In this work, we study the combination of \emph{text and graph} modalities, a challenging but understudied combination which is prevalent across multiple settings including citation networks, social media, and the web. We focus on the popular task of node classification using limited labels; in particular, under the zero- and few-shot scenarios. In contrast to the standard pipeline which feeds standard precomputed (e.g., bag-of-words) text features into a graph neural network, we propose \textbf{T}ext-\textbf{A}nd-\textbf{G}raph (TAG) learning, a more deeply multimodal approach that integrates the raw texts and graph topology into the model design, and can effectively learn from limited supervised signals without any meta-learning procedure. TAG is a two-stage model with (1) a prompt- and graph-based module which generates prior logits that can be directly used for zero-shot node classification, and (2) a trainable module that further calibrates these prior logits in a few-shot manner. Experiments on two node classification datasets show that TAG outperforms all the baselines by a large margin in both zero- and few-shot settings.Comment: Work in progres

    GraphCleaner: Detecting Mislabelled Samples in Popular Graph Learning Benchmarks

    Full text link
    Label errors have been found to be prevalent in popular text, vision, and audio datasets, which heavily influence the safe development and evaluation of machine learning algorithms. Despite increasing efforts towards improving the quality of generic data types, such as images and texts, the problem of mislabel detection in graph data remains underexplored. To bridge the gap, we explore mislabelling issues in popular real-world graph datasets and propose GraphCleaner, a post-hoc method to detect and correct these mislabelled nodes in graph datasets. GraphCleaner combines the novel ideas of 1) Synthetic Mislabel Dataset Generation, which seeks to generate realistic mislabels; and 2) Neighborhood-Aware Mislabel Detection, where neighborhood dependency is exploited in both labels and base classifier predictions. Empirical evaluations on 6 datasets and 6 experimental settings demonstrate that GraphCleaner outperforms the closest baseline, with an average improvement of 0.14 in F1 score, and 0.16 in MCC. On real-data case studies, GraphCleaner detects real and previously unknown mislabels in popular graph benchmarks: PubMed, Cora, CiteSeer and OGB-arxiv; we find that at least 6.91% of PubMed data is mislabelled or ambiguous, and simply removing these mislabelled data can boost evaluation performance from 86.71% to 89.11%.Comment: ICML 202

    TAP: A Comprehensive Data Repository for Traffic Accident Prediction in Road Networks

    Full text link
    Road safety is a major global public health concern. Effective traffic crash prediction can play a critical role in reducing road traffic accidents. However, Existing machine learning approaches tend to focus on predicting traffic accidents in isolation, without considering the potential relationships between different accident locations within road networks. To incorporate graph structure information, graph-based approaches such as Graph Neural Networks (GNNs) can be naturally applied. However, applying GNNs to the accident prediction problem faces challenges due to the lack of suitable graph-structured traffic accident datasets. To bridge this gap, we have constructed a real-world graph-based Traffic Accident Prediction (TAP) data repository, along with two representative tasks: accident occurrence prediction and accident severity prediction. With nationwide coverage, real-world network topology, and rich geospatial features, this data repository can be used for a variety of traffic-related tasks. We further comprehensively evaluate eleven state-of-the-art GNN variants and two non-graph-based machine learning methods using the created datasets. Significantly facilitated by the proposed data, we develop a novel Traffic Accident Vulnerability Estimation via Linkage (TRAVEL) model, which is designed to capture angular and directional information from road networks. We demonstrate that the proposed model consistently outperforms the baselines. The data and code are available on GitHub (https://github.com/baixianghuang/travel).Comment: 10 pages, 5 figure

    Efficient Heterogeneous Graph Learning via Random Projection

    Full text link
    Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs. Typical HGNNs require repetitive message passing during training, limiting efficiency for large-scale real-world graphs. Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors, enabling efficient mini-batch training. Existing pre-computation-based HGNNs can be mainly categorized into two styles, which differ in how much information loss is allowed and efficiency. We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN), which combines the benefits of one style's efficiency with the low information loss of the other style. To achieve efficiency, the main framework of RpHGNN consists of propagate-then-update iterations, where we introduce a Random Projection Squashing step to ensure that complexity increases only linearly. To achieve low information loss, we introduce a Relation-wise Neighbor Collection component with an Even-odd Propagation Scheme, which aims to collect information from neighbors in a finer-grained way. Experimental results indicate that our approach achieves state-of-the-art results on seven small and large benchmark datasets while also being 230% faster compared to the most effective baseline. Surprisingly, our approach not only surpasses pre-processing-based baselines but also outperforms end-to-end methods.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Great Models Think Alike: Improving Model Reliability via Inter-Model Latent Agreement

    Full text link
    Reliable application of machine learning is of primary importance to the practical deployment of deep learning methods. A fundamental challenge is that models are often unreliable due to overconfidence. In this paper, we estimate a model's reliability by measuring \emph{the agreement between its latent space, and the latent space of a foundation model}. However, it is challenging to measure the agreement between two different latent spaces due to their incoherence, \eg, arbitrary rotations and different dimensionality. To overcome this incoherence issue, we design a \emph{neighborhood agreement measure} between latent spaces and find that this agreement is surprisingly well-correlated with the reliability of a model's predictions. Further, we show that fusing neighborhood agreement into a model's predictive confidence in a post-hoc way significantly improves its reliability. Theoretical analysis and extensive experiments on failure detection across various datasets verify the effectiveness of our method on both in-distribution and out-of-distribution settings.Comment: ICML 202
    • …
    corecore