8,639 research outputs found

    Resonance fluorescence beyond the dipole approximation of a quantum dot in a plasmonic nanostructure

    Full text link
    The mesoscopic characteristics of a quantum dot (QD), which make the dipole approximation (DA) break down, provide a new dimension to manipulate light-matter interaction [M. L. Andersen et al., Nat. Phys. 7, 215 (2011)]. Here we investigate the power spectrum and the second-order correlation property of the fluorescence from a resonantly driven QD placed on a planar metal. It is revealed that due to the pronounced QD spatial extension and the dramatic variation of the triggered surface plasmon near the metal, the fluorescence has a notable contribution from the quadrupole moment. The {\pi}-rotation symmetry of the fluorescence to the QD orientation under the DA is broken. By manipulating the QD orientation and quadrupole moment, the spectrum can be switched between the Mollow triplet and a single peak, and the fluorescence characterized by the antibunching in the second-order correlation function can be changed from the weak to the strong radiation regime. Our result is instructive for utilizing the unique mesoscopic effects to develop nanophotonic devices

    Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering

    Full text link
    The generation of quantum entanglement of macroscopic or mesoscopic bodies in mechanical motion is generally bounded by the thermal fluctuation exerted by their environments. Here we propose a scheme to establish stationary entanglement between two mechanically oscillating mirrors of a cavity. It is revealed that, by applying a broadband squeezed laser acting as a squeezed-vacuum reservoir to the cavity, a stable entanglement between the mechanical mirrors can be generated. Using the adiabatic elimination and master equation methods, we analytically find that the generated entanglement is essentially determined by the squeezing of the relative momentum of the mechanical mirrors, which is transferred from the squeezed reservoir through the cavity. Numerical verification indicates that our scheme is within the present experimental state of the art of optomechanics.Comment: 9 pages, 6 figure

    Coupled Cluster Treatment of the Alternating Bond Diamond Chain

    Full text link
    By the analytical coupled cluster method (CCM), we study both the ground state and lowest-lying excited-state properties of the alternating bond diamond chain. The numerical exact diagonalization (ED) method is also applied to the chain to verify the accuracy of CCM results. The ED results show that the ground-state phase diagram contains two exact spin cluster solid ground states, namely, the tetramer-dimer (TD) state and dimer state, and the ferrimagnetic long-range-ordered state. We prove that the two exact spin cluster solid ground states can both be formed by CCM. Moreover, the exact spin gap in the TD state can be obtained by CCM. In the ferrimagnetic region, we find that the CCM results for some physical quantities, such as the ground-state energy, the sublattice magnetizations, and the antiferromagnetic gap, are comparable to the results obtained by numerical methods. The critical line dividing the TD state from the ferrimagnetic state is also given by CCM and is in perfect agreement with that determined by the ED method.Comment: arXiv admin note: text overlap with arXiv:1502.0680

    Exact decoherence-free state of two distant quantum systems in a non-Markovian environment

    Full text link
    Decoherence-free state (DFS) encoding supplies a useful way to avoid the detrimental influence of the environment on quantum information processing. The DFS was previously well established in either the two subsystems locating at the same spatial position or the dynamics under the Born--Markovian approximation. Here, we investigate the exact DFS of two spatially separated quantum systems consisting of two-level systems or harmonic oscillators coupled to a common non-Markovian zero-temperature bosonic environment. The exact distance-dependent DFS and the explicit criterion for forming the DFS are obtained analytically, which reveals that the DFS can arise only in one-dimensional environment. It is remarkable to further find that the DFS is just the system-reduced state of the famous bound state in the continuum (BIC) of the total system predicted by Wigner and von Neumann. On the one hand our result gives insight into the physical nature of the DFS, and on the other hand it supplies an experimentally accessible scheme to realize the mathematically curious BIC in the standard quantum optical systems.Comment: 7 pages, 3 figure

    Towards A Deep Insight into Landmark-based Visual Place Recognition: Methodology and Practice

    Full text link
    In this paper, we address the problem of landmark-based visual place recognition. In the state-of-the-art method, accurate object proposal algorithms are first leveraged for generating a set of local regions containing particular landmarks with high confidence. Then, these candidate regions are represented by deep features and pairwise matching is performed in an exhaustive manner for the similarity measure. Despite its success, conventional object proposal methods usually produce massive landmark-dependent image patches exhibiting significant distribution variance in scale and overlap. As a result, the inconsistency in landmark distributions tends to produce biased similarity between pairwise images yielding the suboptimal performance. In order to gain an insight into the landmark-based place recognition scheme, we conduct a comprehensive study in which the influence of landmark scales and the proportion of overlap on the recognition performance is explored. More specifically, we thoroughly study the exhaustive search based landmark matching mechanism, and thus derive three-fold important observations in terms of the beneficial effect of specific landmark generation strategies. Inspired by the above observations, a simple yet effective dense sampling based scheme is presented for accurate place recognition in this paper. Different from the conventional object proposal strategy, we generate local landmarks of multiple scales with uniform distribution from entire image by dense sampling, and subsequently perform multi-scale fusion on the densely sampled landmarks for similarity measure. The experimental results on three challenging datasets demonstrate that the recognition performance can be significantly improved by our efficient method in which the landmarks are appropriately produced for accurate pairwise matching

    Quantum entanglement and teleportation in quantum dot

    Full text link
    We study the thermal entanglement and quantum teleportation using quantum dot as a resource. We first consider entanglement of the resource, and then focus on the effects of different parameters on the teleportation fidelity under different conditions. The critical temperature of disentanglement is obtained. Based on Bell measurements in two subspaces, we find the anisotropy measurements is optimal to the isotropy arising from the entangled eigenstates of the system in the anisotropy subspace. In addition, it is shown that the anisotropy transmission fidelity is very high and stable for quantum dot as quantum channel when the parameters are adjusted. The possible applications of quantum dot are expected in the quantum teleportation

    Quasiparticle Band Gaps, Excitonic Effects, and Anisotropic Optical Properties of Monolayer Distorted 1-T Diamond-chain Structures

    Full text link
    We report many-body perturbation theory calculations of excited-state properties of distorted 1-T diamond-chain monolayer rhenium disulfide (ReS2) and diselenide (ReSe2). Electronic self-energy substantially enhances their quasiparticle band gaps and, surprisingly, converts monolayer ReSe2 to a direct-gap semiconductor, which was, however, regarded to be an indirect one by density-functional-theory calculations. Their optical absorption spectra are dictated by strongly bound excitons. Unlike hexagonal structures, the lowest-energy bright exciton of distorted 1-T ReS2 exhibits a perfect figure-8 shape polarization dependence but those of ReSe2 only exhibit a partial polarization dependence, which results from two nearly-degenerated bright excitons whose polarization preferences are not aligned. Our first-principles calculations are in agreement with experiments and pave the way for optoelectronic applications

    Analytical and numerical studies of the one-dimensional sawtooth chain

    Full text link
    By using the analytical coupled cluster method, the numerical exact diagonalization method, and the numerical density matrix renormalization group method, we investigated the properties of the one-dimensional sawtooth chain. The results of the coupled cluster method based on Neel state demonstrate that the ground state is in the quasi-Neel-long-range order state when a<ac1. The translational symmetry of the ground state varies and the ground state evolves from the quasi-Neel-long-range order state to the dimerized state at the critical point ac1. The dimerized state is stable in the intermediate parameter regime and vanishes at another critical point ac2. The results drawn from the exact diagonalization show that the precise critical point ac1 and ac2 can be determined by using the spin stiffness fidelity susceptibility and spin gap separately. We compared the results obtained by using the coupled cluster method based on canted state with those obtained based on spiral state, and found that the ground state of the sawtooth chain is in the quasi-canted state if a>ac2. The results of the coupled cluster method and the density matrix renormalization group method both disclose that the type of the quantum phase transition occurring at ac2 belongs to the first-order transition.Comment: accepted versio

    Canonical versus noncanonical equilibration dynamics of open quantum systems

    Full text link
    In statistical mechanics, any quantum system in equilibrium with its weakly coupled reservoir is described by a canonical state at the same temperature as the reservoir. Here, by studying the equilibration dynamics of a harmonic oscillator interacting with a reservoir, we evaluate microscopically the condition under which the equilibration to a canonical state is valid. It is revealed that the non-Markovian effect and the availability of a stationary state of the total system play a profound role in the equilibration. In the Markovian limit, the conventional canonical state can be recovered. In the non-Markovian regime, when the stationary state is absent, the system equilibrates to a generalized canonical state at an effective temperature; whenever the stationary state is present, the equilibrium state of the system cannot be described by any canonical state anymore. Our finding of the physical condition on such noncanonical equilibration might have significant impact on statistical physics. A physical scheme based on circuit QED is proposed to test our results

    A Model for the Coexistence of p-wave Superconductivity and Ferroelectricity

    Full text link
    A model for the coexistence of p-wave superconductivity (SC) and ferroelectricity (FE) is presented. The Hamiltonian of SC sector and FE sector can be diagonalized by using the so(5)so(5) and h(4)h(4) algebraic coherent states respectively. We assume a minimal symmetry-allow coupling and simplify the total Hamiltonian through a double mean-field approximation (DMFA). A variational coherent-state (VCS) trial wave-function is applied for the ground state. It is found that the ferroelectricity gives rise to the magnetic field effect of p-wave superconductivity.Comment: 11pages,no figur
    • …
    corecore