19,751 research outputs found

    Spatiotemporal variation in precipitation during rainy season in Beibu Gulf, South China, from 1961 to 2016

    Get PDF
    The spatiotemporal variation in precipitation is an important part of water cycle change, which is directly associatedwith the atmospheric environment and climate change. The high-resolution spatiotemporal change of precipitation is still unknown inmany areas despite its importance. This study analyzed the spatiotemporal variation in precipitation in Beibu Gulf, South China, during the rainy season (fromApril to September) in the period of 1961–2016. The precipitation datawere collected from 12 national standard rain-gauge observation stations. The spatiotemporal variation in precipitation was evaluated with incidence rate and contribution rate of precipitation. The tendency of variations was analyzed using the Mann–Kendall method. The precipitation in the rainy season contributed 80% to the total annual precipitation. In general, there was an exponential decreasing tendency between the precipitation incidence rate and increased precipitation durations. The corresponding contribution rate showed a downward trend after an initial increase. The precipitation incidence rate decreased with the rising precipitation grades, with a gradual increase in contribution rate. The precipitation incidence rate and contribution rate of 7–9 d durations showed the significant downward trends that passed the 95% level of significance test. The results provide a new understanding of precipitation change in the last five decades, which is valuable for predicting future climate change and extreme weather prevention and mitigation

    Ion dynamics in auroral potential structures and formation of ion conic distribution

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 1981This thesis is concerned with the problem of how the positive ions are energized by the two-dimensional potential structures along auroral field lines; these auroral potential structures are known to be responsible for accelerating electrons into the ionosphere to produce discrete auroras. A systematic numerical study of the test ion dynamics in auroral potential structures, either V-shaped or S-shaped, has been carried out. Transverse ion accelerations occur if the width of the auroral potential structure (Lx ≤ ρi). This result shows that the conic distribution of upstreaming ions observed on auroral field lines can be generated by the same potential structures which produce the thin auroral arcs (Lx ≤ ρi). This transverse acceleration mechanism operates more effectively on heavier ions, resulting in O+ ions more energetic than H+ ions as indicated by observations

    Ixazomib enhances parathyroid hormone-induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor.

    Get PDF
    The anabolic action of PTH in bone is mostly mediated by cAMP/PKA and Wnt-independent activation of β-catenin/T-cell factor (TCF) signaling. β-Catenin switches the PTH receptor (PTHR) signaling from cAMP/PKA to PLC/PKC activation by binding to the PTHR. Ixazomib (Izb) was recently approved as the first orally administered proteasome inhibitor for the treatment of multiple myeloma; it acts in part by inhibition of pathological bone destruction. Proteasome inhibitors were reported to stabilize β-catenin by the ubiquitin-proteasome pathway. However, how Izb affects PTHR activation to regulate β-catenin/TCF signaling is poorly understood. In the present study, using CRISPR/Cas9 genome-editing technology, we show that Izb reverses β-catenin-mediated PTHR signaling switch and enhances PTH-induced cAMP generation and cAMP response element-luciferase activity in osteoblasts. Izb increases active forms of β-catenin and promotes β-catenin translocation, thereby dissociating β-catenin from the PTHR at the plasma membrane. Furthermore, Izb facilitates PTH-stimulated GSK3β phosphorylation and β-catenin phosphorylation. Thus Izb enhances PTH stimulation of β-catenin/TCF signaling via cAMP-dependent activation, and this effect is due to its separating β-catenin from the PTHR. These findings provide evidence that Izb may be used to improve the therapeutic efficacy of PTH for the treatment of osteoporosis and other resorptive bone diseases
    corecore