126 research outputs found
Population Synthesis via k-Nearest Neighbor Crossover Kernel
The recent development of multi-agent simulations brings about a need for
population synthesis. It is a task of reconstructing the entire population from
a sampling survey of limited size (1% or so), supplying the initial conditions
from which simulations begin. This paper presents a new kernel density
estimator for this task. Our method is an analogue of the classical
Breiman-Meisel-Purcell estimator, but employs novel techniques that harness the
huge degree of freedom which is required to model high-dimensional nonlinearly
correlated datasets: the crossover kernel, the k-nearest neighbor restriction
of the kernel construction set and the bagging of kernels. The performance as a
statistical estimator is examined through real and synthetic datasets. We
provide an "optimization-free" parameter selection rule for our method, a
theory of how our method works and a computational cost analysis. To
demonstrate the usefulness as a population synthesizer, our method is applied
to a household synthesis task for an urban micro-simulator.Comment: 10 pages, 4 figures, IEEE International Conference on Data Mining
(ICDM) 201
- …