39 research outputs found

    Total r-process Yields of Milky Way Neutron Star Mergers

    Full text link
    While it is now known that double neutron star binary systems (DNSs) are copious producers of heavy elements, there remains much speculation about whether they are the sole or even principal site of rapid neutron-capture (r-process) nucleosynthesis, one of the primary ways in which heavy elements are produced. The occurrence rates, delay times, and galactic environments of DNSs hold sway over estimating their total contribution to the elemental abundances in the Solar system and the Galaxy. Furthermore, the expected elemental yield for DNSs may depend on the merger parameters themselves -- such as their stellar masses and radii -- which is not currently considered in many galactic chemical evolution models. Using the characteristics of the observed sample of DNSs in the Milky Way as a guide, we predict the expected nucleosynthetic yields that a population of DNSs would produce upon merger, and we compare that nucleosynthetic signature to the heavy-element abundance pattern of the Solar system elements. We find that with our current models, the present DNS population favors production of the lighter r-process elements, while underproducing the heaviest elements relative to the Solar system. This inconsistency could imply an additional site for the heaviest elements or a population of DNSs much different from that observed today.Comment: 12 pages, 6 figures, 2 table

    Actinide-rich and Actinide-poor rr-Process Enhanced Metal-Poor Stars do not Require Separate rr-Process Progenitors

    Full text link
    The astrophysical production site of the heaviest elements in the universe remains a mystery. Incorporating heavy element signatures of metal-poor, rr-process enhanced stars into theoretical studies of rr-process production can offer crucial constraints on the origin of heavy elements. In this study, we introduce and apply the "Actinide-Dilution with Matching" model to a variety of stellar groups ranging from actinide-deficient to actinide-enhanced to empirically characterize rr-process ejecta mass as a function of electron fraction. We find that actinide-boost stars do not indicate the need for a unique and separate rr-process progenitor. Rather, small variations of neutron richness within the same type of rr-process event can account for all observed levels of actinide enhancements. The very low-YeY_e, fission-cycling ejecta of an rr-process event need only constitute 10-30% of the total ejecta mass to accommodate most actinide abundances of metal-poor stars. We find that our empirical YeY_e distributions of ejecta are similar to those inferred from studies of GW170817 mass ejecta ratios, which is consistent with neutron-star mergers being a source of the heavy elements in metal-poor, rr-process enhanced stars.Comment: 14 pages, 11 figures, Submitted to Ap

    Superheavy Elements in Kilonovae

    Full text link
    As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to search for electromagnetic counterparts of compact object mergers will also begin. The light curves and spectra from the first "kilonova" associated with a binary neutron star binary (NSM) suggests that these sites are hosts of the rapid neutron capture ("rr") process. However, it is unknown just how robust elemental production can be in mergers. Identifying signposts of the production of particular nuclei is critical for fully understanding merger-driven heavy-element synthesis. In this study, we investigate the properties of very neutron rich nuclei for which superheavy elements (Z≥104Z\geq 104) can be produced in NSMs and whether they can similarly imprint a unique signature on kilonova light-curve evolution. A superheavy-element signature in kilonovae represents a route to establishing a lower limit on heavy-element production in NSMs as well as possibly being the first evidence of superheavy element synthesis in nature. Favorable NSMs conditions yield a mass fraction of superheavy elements is XZ≥104≈3×10−2X_{Z\geq 104}\approx 3\times 10^{-2} at 7.5 hours post-merger. With this mass fraction of superheavy elements, we find that kilonova light curves may appear similar to those arising from lanthanide-poor ejecta. Therefore, photometric characterizations of superheavy-element rich kilonova may possibly misidentify them as lanthanide-poor events.Comment: 9 pages, 5 figure

    Uranium Abundances and Ages of RR-process Enhanced Stars with Novel U II Lines

    Full text link
    The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the Universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar evolution models. The uranium abundance, which can be determined for metal-poor rr-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used a singlesingle U II line at λ3859\lambda3859 \r{A}. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel U II lines at λ4050\lambda4050 \r{A} and λ4090\lambda4090 \r{A}, in addition to the canonical λ3859\lambda3859 \r{A} line. We find that the U II lines at λ4050\lambda4050 \r{A} and λ4090\lambda4090 \r{A} are reliable and render U abundances in agreement with the λ3859\lambda3859 U abundance, for all the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2-002333, HE 1523-0901, and CS 31082-001, using multiple U II lines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early Universe, especially of rr-process elements.Comment: Resubmitted to Ap

    Characterizing r-Process Sites through Actinide Production

    Get PDF
    © Published under licence by IOP Publishing Ltd. Of the variations in the elemental abundance patterns of stars enhanced with r-process elements, the variation in the relative actinide-To-lanthanide ratio is among the most significant. We investigate the source of these actinide differences in order to determine whether these variations are due to natural differences in astrophysical sites, or due to the uncertain nuclear properties that are accessed in r-process sites. We find that variations between relative stellar actinide abundances is most likely astrophysical in nature, owing to how neutron-rich the ejecta from an r-process event may be. Furthermore, if an r-process site is capable of generating variations in the neutron-richness of its ejected material, then only one type of r-process site is needed to explain all levels of observed relative actinide enhancements
    corecore