64 research outputs found

    Rapid communication of upper‐ocean salinity anomaly to deep waters of the Iceland Basin indicates an AMOC short‐cut

    Get PDF
    The mooring observations of the Overturning in the Subpolar North Atlantic Program reveal a significant freshening of the Iceland Scotland overflow waters that did not involve the Nordic Seas, the source of the dense Deep North Atlantic Water (Devana et al., 2021, https://doi.org/10.1029/2021GL094396). Their study suggests that this freshening at depth in the Iceland Basin stems from the largest upper-ocean freshening event in 120 years that rapidly communicated through entrainment with the Iceland Scotland Overflow Waters. This communication, which is very likely driven by strong wintertime heat losses, strongly adds to our thinking that the progression of this extreme freshening event is providing us with a natural tracer that is helping to identify and understand key processes that determine the strength and variability of the overturning circulation and its sensitivity to ongoing climate change. Continued monitoring of the overturning in the North Atlantic is therefore necessary

    The retroflection of part of the East Greenland Current at Cape Farewell

    Get PDF
    The East Greenland Current (EGC) and the smaller East Greenland Coastal Current (EGCC) provide the major conduit for cold fresh polar water to enter the lower latitudes of the North Atlantic. They flow equatorward through the western Irminger Basin and around Cape Farewell into the Labrador Sea. The surface circulation and transport of the Cape Farewell boundary current region in summer 2005 is described. The EGCC merges with Arctic waters of the EGC to the south of Cape Farewell, forming the West Greenland Current. The EGC transport decreases from 15.5 Sv south of Cape Farewell to 11.7 Sv in the eastern Labrador Sea (where the water becomes known as Irminger Sea Water). The decrease in EGC transport is balanced by the retroflection of a substantial proportion of the boundary current (5.1 Sv) into the central Irminger Basin; a new pathway for fresh water into the interior of the subpolar gyre

    Arctic Ocean and Hudson Bay freshwater exports: New estimates from 7 decades of hydrographic surveys on the Labrador Shelf

    Get PDF
    While reasonable knowledge of multi-decadal Arctic freshwater storage variability exists, we have little knowledge of Arctic freshwater exports on similar timescales. A hydrographic time series from the Labrador Shelf, spanning seven decades at annual resolution, is here used to quantify Arctic Ocean freshwater export variability west of Greenland. Output from a high-resolution coupled ice-ocean model is used to establish the representativeness of those hydrographic sections. Clear annual to decadal variability emerges, with high freshwater transports during the 1950s and 1970s–80s, and low transports in the 1960s, and from the mid-1990s to 2016, with typical amplitudes of 30 mSv (1 Sv = 106 m3 s-1). The variability in both the transports and cumulative volumes correlates well both with Arctic and North Atlantic freshwater storage changes on the same timescale. We refer to the "inshore branch" of the Labrador Current as the Labrador Coastal Current, because it is a dynamically- and geographically-distinct feature. It originates as the Hudson Bay outflow, and preserves variability from river runoff into the Hudson Bay catchment. We find a need for parallel, long-term freshwater transport measurements from Fram and Davis Straits, to better understand Arctic freshwater export control mechanisms and partitioning of variability between routes west and east of Greenland, and a need for better knowledge and understanding of year-round (solid and liquid) freshwater fluxes on the Labrador shelf. Our results have implications for wider, coherent atmospheric control on freshwater fluxes and content across the Arctic and northern North Atlantic Oceans

    A regional thermohaline inverse method for estimating circulation and mixing in the Arctic and subpolar North Atlantic

    Get PDF
    A Regional Thermohaline Inverse Method (RTHIM) is presented that estimates velocities through the section bounding an enclosed domain and transformation rates due to interior mixing within the domain, given inputs of surface boundary fluxes of heat and salt and interior distributions of salinity and temperature. The method works by invoking a volumetric balance in thermohaline coordinates between the transformation due to mixing, surface fluxes and advection, while constraining the mixing to be down tracer gradients. The method is validated using a 20-year mean of outputs from the NEMO model in an Arctic and subpolar North Atlantic domain, bound to the south by a section with a mean latitude of 66°N. RTHIM solutions agree well with the NEMO model ‘truth’ and are robust to a range of parameters; the MOC, heat and freshwater transports calculated from an ensemble of RTHIM solutions are within 12%, 10% and 19%, respectively, of the NEMO values. There is also bulk agreement between RTHIM solution transformation rates due to mixing and those diagnosed from NEMO. Localized differences in diagnosed mixing may be used to guide the development of mixing parameterizations in models such as NEMO, whose downgradient diffusive closures with prescribed diffusivity may be considered oversimplified and too restrictive

    Atlantic overturning: new observations and challenges

    Get PDF
    This paper provides an introduction to the special issue of the Philosophical Transactions of the Royal Society of London of papers from the 2022 Royal Society meeting on ‘Atlantic overturning: new observations and challenges'. It provides the background and rationale for the meeting, briefly summarizes prior progress on observing the Atlantic overturning circulation and draws out the new challenges that papers presented at the meeting raise, so pointing the way forward for future research. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'

    The North Atlantic subpolar circulation in an eddy-resolving global ocean model

    Get PDF
    The subpolar North Atlantic represents a key region for global climate, but most numerical models still have well-described limitations in correctly simulating the local circulation patterns. Here, we present the analysis of a 30-year run with a global eddy-resolving (1/12°) version of the NEMO ocean model. Compared to the 1° and 1/4° equivalent versions, this simulation more realistically represents the shape of the Subpolar Gyre, the position of the North Atlantic Current, and the Gulf Stream separation. Other key improvements are found in the representation of boundary currents, multi-year variability of temperature and depth of winter mixing in the Labrador Sea, and the transport of overflows at the Greenland–Scotland Ridge. However, the salinity, stratification and mean depth of winter mixing in the Labrador Sea, and the density and depth of overflow water south of the sill, still present challenges to the model. This simulation also provides further insight into the spatio-temporal development of the warming event observed in the Subpolar Gyre in the mid 1990s, which appears to coincide with a phase of increased eddy activity in the southernmost part of the gyre. This may have provided a gateway through which heat would have propagated into the gyre's interior

    Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic

    Get PDF
    The ocean’s role in global climate change largely depends on its heat transport. Therefore, understanding the oceanic meridional heat transport (MHT) variability is a fundamental issue. Prevailing observational and modeling evidence suggests that MHT variability is primarily determined by the large-scale ocean circulation. Here, using new in situ observations in the eastern subpolar North Atlantic Ocean and an eddy-resolving numerical model, we show that energetic mesoscale eddies with horizontal scales of about 10–100 km profoundly modulate MHT variability on time scales from intra-seasonal to interannual. Our results reveal that the velocity changes due to mesoscale processes produce substantial variability for the MHT regionally (within sub-basins) and the subpolar North Atlantic as a whole. The findings have important implications for understanding the mechanisms for poleward heat transport variability in the subpolar North Atlantic Ocean, a key region for heat and carbon sequestration, ice–ocean interaction, and biological productivity

    Seasonality of freshwater in the east Greenland current system from 2014 to 2016

    Get PDF
    The initial 2 years of Overturning in the Subpolar North Atlantic Program mooring data (2014–2016) provide the first glimpse into the seasonality of freshwater in the complete East Greenland Current system. Using a set of eight moorings southeast of Greenland at 60∘ N, we find two distinct, persistent velocity cores on the shelf and slope. These are the East Greenland Coastal Current, which carries cold, fresh water from the Arctic and Greenland along the shelf, and the East Greenland/Irminger Current over the slope, which is a combination of cold, fresh waters and warm, salty waters of Atlantic origin. Together, these currents carry 70% of the freshwater transport across the subpolar North Atlantic east of Greenland. The freshwater transport referenced to a salinity of 34.9 is approximately equipartitioned between the coastal current (East Greenland Coastal Current) and the fresh portion of the slope current (East Greenland Current), which carry 42 ± 6 and 32 ± 6 mSv, respectively. The coastal and slope current freshwater transports have staggered seasonality during the observed period, peaking in December and March, respectively, suggesting that summer surveys have underestimated freshwater transport in this region. We find that the continental slope is freshest in the winter, when surface cooling mixes freshwater off the shelf. This previously unmeasured freshwater over the slope is likely to enter the Labrador Sea downstream, where it can impact deep convection

    Transports and pathways of overflow water in the Rockall Trough

    Get PDF
    Water mass analysis reveals a persistent core of deep overflow water within the Rockall Trough which hugs the northern and western boundaries of the basin. Mean speeds within this overflow are 10–15 cm s−1 giving a transport time from the Wyville Thomson Ridge to the central basin of < 50 days. Analysis of the 40-year Extended Ellett Line record shows proportions of Norwegian Sea Deep Water associated with the deep core exceed 15% around one quarter of the time. We present the first transport estimates for overflow water in the Rockall Trough. This flux is for overflow water modified by mixing with a density greater than 27.65 kg m−3. Mean values calculated both from a newly deployed mooring array (OSNAP project) and indirectly from the Extended Ellett Line time-series are −0.3 ± 0.04 Sv. Although the flux is highly variable there is no long term trend. As some overflow appears to exit into the Iceland Basin via channels between the northern banks, we suggest that the volume transport will likely increase as the flow pathway is traced back around the boundary of the Rockall Trough towards the Wyville Thomson Ridge

    Observed deep cyclonic eddies around Southern Greenland

    Get PDF
    Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f > 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region
    • 

    corecore