142 research outputs found

    Structure of the Local-field factor of the 2-D electron fluid. Possible evidence for correlated scattering of electron pairs

    Full text link
    The static local-field factor (LFF) of the 2-D electron fluid is calculated {\it nonperturbatively} using a mapping to a classical Coulomb fluid [\lbrackPhys. Rev. Lett., {\bf 87}, 206]\rbrack. The LFF for the paramagnetic fluid {\it differs markedly} from perturbation theory where a maximum near 2kFk_F is expected. Our LFF has a quasi-linear small-k region leading to a maximum close to 3kFk_F, in agreent with currently available quantum Monte Carlo data. The structure in the LFF and its dependence on the density and temperature are interpretted as a signature of correlated scattering of electron pairs of opposite spin.The lack of structure at 2kF2k_F implies weakened Friedel oscillations, Kohn anomalies etc.Comment: 4 pages, 3 figures, version 2 of condmat/0304034, see http://nrcphy1.phy.nrc.ca/ims/qp/chandre/chnc/ Changs in the text, figure 2 and updated reference

    Kirzhnits gradient expansion for a D-dimensional Fermi gas

    Full text link
    For an ideal D-dimensional Fermi gas under generic external confinement we derive the correcting coefficient (D−2)/3D(D-2)/3D of the von Weizsacker term in the kinetic energy density. To obtain this coefficient we use the Kirzhnits semiclassical expansion of the number operator up to the second order in the Planck constant ℏ\hbar. Within this simple and direct approach we determine the differential equation of the density profile and the density functional of the Fermi gas. In the case D=2 we find that the Kirzhnits gradient corrections vanish to all order in ℏ\hbar.Comment: 6 pages, 0 figures, accepted for publication in J. Phys. A: Math. Theo

    Hartree-Fock method posed as a density-functional theory: Application to the Be atom

    Get PDF
    The Hartree-Fock ground-state energy and electron density are first shown to be derivable from a local one-body effective potential v(r). As a nontrivial example, attention is then focused on the Be atom and isoelectronic atomic ions, the wave functions being written in terms of the density amplitude and phase. Some related general comments on the two-level one-dimensional system are included; kinetic-energy density is shown to be a local functional of electron density generated by the harmonic-oscillator potential

    Simple model of the static exchange-correlation kernel of a uniform electron gas with long-range electron-electron interaction

    Full text link
    A simple approximate expression in real and reciprocal spaces is given for the static exchange-correlation kernel of a uniform electron gas interacting with the long-range part only of the Coulomb interaction. This expression interpolates between the exact asymptotic behaviors of this kernel at small and large wave vectors which in turn requires, among other thing, information from the momentum distribution of the uniform electron gas with the same interaction that have been calculated in the G0W0 approximation. This exchange-correlation kernel as well as its complement analogue associated to the short-range part of the Coulomb interaction are more local than the Coulombic exchange-correlation kernel and constitute potential ingredients in approximations for recent adiabatic connection fluctuation-dissipation and/or density functional theory approaches of the electronic correlation problem based on a separate treatment of long-range and short-range interaction effects.Comment: 14 pages, 14 figures, to be published in Phys. Rev.

    Scaling in the correlation energies of two-dimensional artificial atoms

    Full text link
    We find an unexpected scaling in the correlation energy of artificial atoms, i.e., harmonically confined two-dimensional quantum dots. The scaling relation is found through extensive numerical examinations including Hartree-Fock, variational quantum Monte Carlo, density-functional, and full configuration-interaction calculations. We show that the correlation energy, i.e., the true ground-state total energy subtracted by the Hartree-Fock total energy, follows a simple function of the Coulomb energy, confimenent strength and, the number of electrons. We find an analytic expression for this function, as well as for the correlation energy per particle and for the ratio between the correlation and total energies. Our tests for independent diffusion Monte Carlo and coupled-cluster results for quantum dots -- including open-shell data -- confirm the generality of the obtained scaling. As the scaling is also well applicable to ≳\gtrsim 100 electrons, our results give interesting prospects for the development of correlation functionals within density-functional theory.Comment: Accepted to Journal of Physics: Condensed Matte

    Exchange-correlation energy densities for two-dimensional systems from quantum dot ground-states

    Full text link
    In this paper we present a new approach how to extract polarization-dependent exchange-correlation energy densities for two-dimensional systems from reference densities and energies of quantum dots provided by exact diagonalization. Compared with results from literature we find systematic corrections for all polarizations in the regime of high densities.Comment: 7 figures. submitted to Phys. Rev.

    Density-Functional Theory of Quantum Freezing: Sensitivity to Liquid-State Structure and Statistics

    Full text link
    Density-functional theory is applied to compute the ground-state energies of quantum hard-sphere solids. The modified weighted-density approximation is used to map both the Bose and the Fermi solid onto a corresponding uniform Bose liquid, assuming negligible exchange for the Fermi solid. The required liquid-state input data are obtained from a paired phonon analysis and the Feynman approximation, connecting the static structure factor and the linear response function. The Fermi liquid is treated by the Wu-Feenberg cluster expansion, which approximately accounts for the effects of antisymmetry. Liquid-solid transitions for both systems are obtained with no adjustment of input data. Limited quantitative agreement with simulation indicates a need for further improvement of the liquid-state input through practical alternatives to the Feynman approximation.Comment: IOP-TeX, 21 pages + 7 figures, to appear, J. Phys.: Condens. Matte

    Bosonization of interacting fermions in arbitrary dimension beyond the Gaussian approximation

    Full text link
    We use our recently developed functional bosonization approach to bosonize interacting fermions in arbitrary dimension dd beyond the Gaussian approximation. Even in d=1d=1 the finite curvature of the energy dispersion at the Fermi surface gives rise to interactions between the bosons. In higher dimensions scattering processes describing momentum transfer between different patches on the Fermi surface (around-the-corner processes) are an additional source for corrections to the Gaussian approximation. We derive an explicit expression for the leading correction to the bosonized Hamiltonian and the irreducible self-energy of the bosonic propagator that takes the finite curvature as well as around-the-corner processes into account. In the special case that around-the-corner scattering is negligible, we show that the self-energy correction to the Gaussian propagator is negligible if the dimensionless quantities (qckF)dF0[1+F0]−1ÎŒÎœÎ±âˆŁâˆ‚ÎœÎ±âˆ‚ÎŒâˆŁ ( \frac{q_{c} }{ k_{F}} )^d F_{0} [ 1 + F_{0} ]^{-1} \frac{\mu}{\nu^{\alpha}} | \frac{ \partial \nu^{\alpha} }{ \partial \mu} | are small compared with unity for all patches α\alpha. Here qcq_{c} is the cutoff of the interaction in wave-vector space, kFk_{F} is the Fermi wave-vector, ÎŒ\mu is the chemical potential, F0F_{0} is the usual dimensionless Landau interaction-parameter, and Μα\nu^{\alpha} is the {\it{local}} density of states associated with patch α\alpha. We also show that the well known cancellation between vertex- and self-energy corrections in one-dimensional systems, which is responsible for the fact that the random-phase approximation for the density-density correlation function is exact in d=1d=1, exists also in d>1d> 1, provided (1) the interaction cutoff qcq_{c} is small compared with kFk_{F}, and (2) the energy dispersion is locally linearized at the Fermi the Fermi surface. Finally, we suggest a new systematic method to calculate corrections to the RPA, which is based on the perturbative calculation of the irreducible bosonic self-energy arising from the non-Gaussian terms of the bosonized Hamiltonian.Comment: The abstract has been rewritten. No major changes in the text

    Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields

    Get PDF
    Using a Hartree-Fock mesh method and a configuration interaction approach based on a generalized Gaussian basis set we investigate the behaviour of the exchange and correlation energies of small atoms and molecules, namely th e helium and lithium atom as well as the hydrogen molecule, in the presence of a magnetic field covering the regime B=0-100a.u. In general the importance of the exchange energy to the binding properties of at oms or molecules increases strongly with increasing field strength. This is due to the spin-flip transitions and in particular due to the contributions of the tightly bound hydrogenic state s which are involved in the corresponding ground states of different symmetries. In contrast to the exchange energy the correlation energy becomes less relevant with increasing field strength. This holds for the individual configurations constituting the ground state and for the crossovers of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.

    Dynamic correlations in symmetric electron-electron and electron-hole bilayers

    Full text link
    The ground-state behavior of the symmetric electron-electron and electron-hole bilayers is studied by including dynamic correlation effects within the quantum version of Singwi, Tosi, Land, and Sjolander (qSTLS) theory. The static pair-correlation functions, the local-field correction factors, and the ground-state energy are calculated over a wide range of carrier density and layer spacing. The possibility of a phase transition into a density-modulated ground state is also investigated. Results for both the electron-electron and electron-hole bilayers are compared with those of recent diffusion Monte Carlo (DMC) simulation studies. We find that the qSTLS results differ markedly from those of the conventional STLS approach and compare in the overall more favorably with the DMC predictions. An important result is that the qSTLS theory signals a phase transition from the liquid to the coupled Wigner crystal ground state, in both the electron-electron and electron-hole bilayers, below a critical density and in the close proximity of layers (d <~ r_sa_0^*), in qualitative agreement with the findings of the DMC simulations.Comment: 13 pages, 11 figures, 2 table
    • 

    corecore