1,607 research outputs found

    Temperature effects on the 15-85-micron spectra of olivines and pyroxenes

    Get PDF
    Far-infrared spectra of laboratory silicates are normally obtained at room temperature even though the grains responsible for astronomical silicate emission bands seen at wavelengths >20 micron are likely to be at temperatures below ~150 K. In order to investigate the effect of temperature on silicate spectra, we have obtained absorption spectra of powdered forsterite and olivine, along with two orthoenstatites and diopside clinopyroxene, at 3.5+-0.5 K and at room temperature (295+-2K). To determine the changes in the spectra the resolution must be increased from 1 to 0.25 cm^-1 at both temperatures since a reduction in temperature reduces the phonon density, thereby reducing the width of the infrared peaks. Several bands observed at 295 K split at 3.5 K. At 3.5 K the widths of isolated single bands in olivine, enstatites and diopside are ~ 90% of their 295 K-widths. However, in forsterite the 3.5-K-widths of the 31-, 49- and 69-micron bands are, respectively, 90%, 45% and 31% of their 295 K widths. Due to an increase in phonon energy as the lattice contracts, 3.5-K-singlet peaks occur at shorter wavelengths than do the corresponding 295-K peaks; the magnitude of the wavelength shift increases from \~ 0-0.2 micron at 25 micron to ~0.9 micron at 80 micron. Changes in the relative absorbances of spectral peaks are also observed. The temperature dependence of lambda_pk and bandwidth shows promise as a means to deduce characteristic temperatures of mineralogically distinct grain populations. In addition, the observed changes in band strength with temperature will affect estimates of grain masses and relative mineral abundances inferred using room-temperature laboratory data.Comment: 11 pages, 7 figures including figures 3a and 3b. includes latex and eps files. Accepted by MNRAS on 15th March 200

    Resolving Architectural Mismatches of COTS Through Architectural Reconciliation

    Get PDF
    The integration of COTS components into a system under development entails architectural mismatches. These have been tackled, so far, at the component level, through component adaptation techniques, but they also must be tackled at an architectural level of abstraction. In this paper we propose an approach for resolving architectural mismatches, with the aid of architectural reconciliation. The approach consists of designing and subsequently reconciling two architectural models, one that is forward-engineered from the requirements and another that is reverse-engineered from the COTS-based implementation. The final reconciled model is optimally adapted both to the requirements and to the actual COTS-based implementation. The contribution of this paper lies in the application of architectural reconciliation in the context of COTS-based software development. Architectural modeling is based upon the UML 2.0 standard, while the reconciliation is performed by transforming the two models, with the help of architectural design decisions.

    Switching the Conductance of a Molecular Junction using a Proton Transfer Reaction

    Full text link
    A novel mechanism for switching a molecular junction based on a proton transfer reaction triggered by an external electrostatic field is proposed. As a specific example to demonstrate the feasibility of the mechanism, the tautomers [2,5-(4-hydroxypyridine)] and {2,5-[4(1H)-pyridone]} are considered. Employing a combination of first-principles electronic structure calculations and Landauer transport theory, we show that both tautomers exhibit very different conductance properties and realize the "on" and "off" states of a molecular switch. Moreover, we provide a proof of principle that both forms can be reversibly converted into each other using an external electrostatic field.Comment: 14 pages, 5 figure

    Temperature effects on the 15-85 mu m spectra of olivines and pyroxenes

    Get PDF
    Far-infrared spectra of laboratory silicates are normally obtained at room temperature even though the grains responsible for astronomical silicate emission bands seen at wavelengths >20 μm are likely to be at temperatures below ∼150 K. In order to investigate the effect of temperature on silicate spectra, we have obtained absorption spectra of powdered forsterite and olivine, along with two orthoenstatites and diopside clinopyroxene, at 3.5±0.5 K and at room temperature (295±2 K). To determine the changes in the spectra the resolution must be increased from ∼1 to 0.25 cm−1 at both temperatures, because a reduction in temperature reduces the phonon density, thereby reducing the width of the infrared peaks. Several bands observed at 295 K split at 3.5 K. At 3.5 K the widths of isolated single bands in olivine, enstatites and diopside are ∼90 per cent of their 295-K widths. However, in forsterite the 3.5-K widths of the 31-, 49- and 69-μm bands are, respectively, 90, 45 and 31 per cent of their 295-K widths. Owing to an increase in phonon energy as the lattice contracts, 3.5-K singlet peaks occur at shorter wavelengths than do the corresponding 295-K peaks; the magnitude of the wavelength shift increases from ∼0–0.2 μm at 25 μm to ∼0.9 μm at 80 μm. In olivines and enstatites the wavelength shifts can be approximated by polynomials of the form ax+bx2 where x=λpk(295 K) and the coefficients a and b differ between minerals; for diopside this formula gives a lower limit to the shift. Changes in the relative absorbances of spectral peaks are also observed. The temperature dependence of λpk and bandwidth shows promise as a means to deduce characteristic temperatures of mineralogically distinct grain populations. In addition, the observed changes in band strength with temperature will affect estimates of grain masses and relative mineral abundances inferred using room-temperature laboratory data. Spectral measurements of a variety of minerals at a range of temperatures are required to quantify these effects fully

    Six supersoft X-ray binaries: system parameters and twin-jet outflows

    Full text link
    A comparison is made between the properties of CAL 83, CAL 87, RX J0513.9-6951, 1E 0035.4-7230 (SMC 13), RX J0019.8+2156, and RX J0925.7-4758, all supersoft X-ray binaries. Spectra with the same resolution and wavelength coverage of these systems are compared and contrasted. Some new photometry is also presented. The equivalent widths of the principal emission lines of H and He II differ by more than an order of magnitude among these sources, although those of the highest ionization lines (e.g. O VI) are very similar. In individual systems, the velocity curves derived from various ions often differ in phasing and amplitude, but those whose phasing is consistent with the light curves (implying the lines are formed near the compact star) give masses of 1.2M\sim 1.2M_{\odot} and 0.5M\sim 0.5M_{\odot} for the degenerate and mass-losing stars, respectively. This finding is in conflict with currently prevailing theoretical models for supersoft binaries. The three highest luminosity sources show evidence of "jet" outflows, with velocities of 14×103km/s\sim 1-4 \times10^3 km/s. In CAL 83 the shape of the He II 4686\AA profile continues to show evidence that these jets may precess with a period of 69\sim 69 days.Comment: 27 pages including 5 tables, plus 6 figures. To appear in Ap

    Modelling the Recurrent Nova CI Aql in Quiescence

    Get PDF
    We present detailed photometric investigations of the recurrent nova CI Aql. New data obtained after the 2000 outburst are used to derive a 3D geometrical model of the system. The resulting light curves clearly indicate the existence of an asymmetric spray around the accretion disk, as claimed in the past e.g. for the super-soft X-ray source CAL87 in the LMC. The simulated light curves give us the mass transfer rates varying from \dot M ~ 2.5 x 10^{-8} M_\odot / yr in 1991-1996 to 5.5 x 10^{-8} < \dot M < 1.5 x 10^{-7}M_\odot / yr in 2001/2002. The distance and the interstellar foreground extinction resulting from the model are 1.55 kpc and E(B-V) = 0.98 respectively. During fast photometry sequences in 2002 short timescale variations (t ~ 13 minutes) of the mass loss are found. Moreover a change in the orbital period of the system is detectable and results in a mass loss of 2.2 x 10^{-6} < \Delta M < 5.7 x 10^{-6} M_\odot during the nova explosion.Comment: 9 pages 14 eps figures, to appear in Astron. & Astrophy

    Weak Disorder in Fibonacci Sequences

    Full text link
    We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1-epsilon, but follow a different recursion rule with a small probability epsilon. We focus on the weak disorder limit and obtain the Lyapunov exponent, that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling, and copying are considered.Comment: 4 pages, 2 figure

    The 69-mu m forsterite band as a dust temperature indicator

    Get PDF
    A band of pure crystalline forsterite (100 per cent Mg2SiO4) occurs at 69.67 μm at room temperature (295 K); for olivines with ≳10 per cent Fe the corresponding feature is at ≳73 μm. The Mg-rich forsterite feature is observed in a variety of ISO LWS spectra, but the corresponding Fe-rich olivine feature is not. For the 10 astronomical sources in our sample, the forsterite band peaks in the 68.9–69.3 μm range and narrows with decreasing peak wavelength. This is consistent with the shortwards shifting of the peak observed when laboratory samples are cooled to 77 K (69.07 μm) and 3.5 K (68.84 μm). The shifted peak is produced by lattice contraction and the sharpening is due to a decrease in phonon density at lower temperatures. However, the astronomical bands are narrower than those of the laboratory samples. By comparing the laboratory and astronomical peak wavelengths, we deduce characteristic forsterite 69-μm band temperatures that are in the 27–84 K range for the eight post-main-sequence objects in our sample. These values are shown to be consistent with the local continuum temperatures derived using a β=1.5 dust emissivity index, similar to derived interstellar values of the opacity index. For the pre-main sequence-objects HD 100546 and MWC 922, the characteristic 69-μm forsterite band temperatures (127±18 and 139±10 K, respectively) are significantly higher than those of the post-main-sequence objects and are more than twice as high as their local continuum temperatures deduced using β=1.5. The assumption of large grains (β=0) can produce agreement between the derived 69-μm and continuum temperatures for one of these objects but not for the other — a spatial separation between the forsterite and continuum-emitting grains may therefore be implied for it. We conclude that observations of the peak wavelength and FWHM of the 69-μm forsterite band show great promise as a new diagnostic of characteristic grain temperatures

    Experiments on Nucleation in Different Flow Regimes

    Get PDF
    The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys
    corecore