12,572 research outputs found
Separation of foregrounds from cosmic microwave background observations with the MAP satellite
Simulated observations of a 10\dg \times 10\dg field by the Microwave
Anisotropy Probe (MAP) are analysed in order to separate cosmic microwave
background (CMB) emission from foreground contaminants and instrumental noise
and thereby determine how accurately the CMB emission can be recovered. The
simulations include emission from the CMB, the kinetic and thermal
Sunyaev-Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust,
free-free and synchrotron. We find that, even in the presence of these
contaminating foregrounds, the CMB map is reconstructed with an rms accuracy of
about 20 K per 12.6 arcmin pixel, which represents a substantial
improvement as compared to the individual temperature sensitivities of the raw
data channels. We also find, for the single 10\dg \times 10\dg field, that
the CMB power spectrum is accurately recovered for \ell \la 600.Comment: 7 pages, 7 figures, MNRAS submitte
Analytical Approximations for Calculating the Escape and Absorption of Radiation in Clumpy Dusty Environments
We present analytical approximations for calculating the scattering,
absorption and escape of nonionizing photons from a spherically symmetric
two-phase clumpy medium, with either a central point source of isotropic
radiation, a uniform distribution of isotropic emitters, or uniformly
illuminated by external sources. The analytical approximations are based on the
mega-grains model of two-phase clumpy media, as proposed by Hobson & Padman,
combined with escape and absorption probability formulae for homogeneous media.
The accuracy of the approximations is examined by comparison with 3D Monte
Carlo simulations of radiative transfer, including multiple scattering. Our
studies show that the combined mega-grains and escape/absorption probability
formulae provide a good approximation of the escaping and absorbed radiation
fractions for a wide range of parameters characterizing the medium. A realistic
test is performed by modeling the absorption of a starlike source of radiation
by interstellar dust in a clumpy medium, and by calculating the resulting
equilibrium dust temperatures and infrared emission spectrum of both the clumps
and the interclump medium. In particular, we find that the temperature of dust
in clumps is lower than in the interclump medium if clumps are optically thick.
Comparison with Monte Carlo simulations of radiative transfer in the same
environment shows that the analytic model yields a good approximation of dust
temperatures and the emerging UV to FIR spectrum of radiation for all three
types of source distributions mentioned above. Our analytical model provides a
numerically expedient way to estimate radiative transfer in a variety of
interstellar conditions and can be applied to a wide range of astrophysical
environments, from star forming regions to starburst galaxies.Comment: 55 pages, 27 figures. ApJ 523 (1999), in press. Corrected equations
and text so as to be same as ApJ versio
Numerical simulation of neutron radiation effects in avalanche photodiodes
A new one-dimensional (1-D) device model developed for the simulation of neutron radiation effects in silicon avalanche photodiodes is described. The model uses a finite difference technique to solve the time-independent semiconductor equations across a user specified structure. The model includes impact ionization and illumination allowing accurate simulation with minimal assumptions. The effect of neutron radiation damage is incorporated via the introduction of deep acceptor levels subject to Shockley-Read-Hall statistics. Preliminary analysis of an EG&G reverse APD structure is compared with experimental data from a commercial EG&G C30719F APD
An Optimal Skorokhod Embedding for Diffusions
Given a Brownian motion and a general target law (not necessarily
centered or even integrable) we show how to construct an embedding of in
. This embedding is an extension of an embedding due to Perkins, and is
optimal in the sense that it simultaneously minimises the distribution of the
maximum and maximises the distribution of the minimum among all embeddings of
. The embedding is then applied to regular diffusions, and used to
characterise the target laws for which a -embedding may be found.Comment: 22 pages, 4 figure
- …