4,553 research outputs found
Molecular and Ionised Gas Motions in the Compact HII region G29.96-0.02
We present a new observation of the compact HII region, G29.96-0.02, that
allows us to compare the velocity structure in the ionised gas and surrounding
molecular gas directly. This allows us to remove most of the remaining
ambiguity about the nature of this source. In particular, the comparison of the
velocity structure present in the 4S-3P HeI lines with that found in the 1-0
S(1) of molecular hydrogern convincingly rules out a bow shock as being
important to the kinematics of this source. Our new observation therefore
agrees with our previous conclusion, drawn from a velocity resolved HI Br gamma
map, that most of the velocity structure in G29.96-0.02 can largely be
explained as a result of a champagne flow model. We also find that the best
simple model must invoke a powerful stellar wind to evacuate the `head' of the
cometary HII region of ionised gas. However, residual differences between model
and data tend to indicate that no single simple model can adequately explain
all the observed features.Comment: 10 pages, 4 postscript figures. To be published in MNRA
An ultra scale-down analysis of the recovery by dead-end centrifugation of human cells for therapy.
An ultra scale-down method is described to determine the response of cells to recovery by dead-end (batch) centrifugation under commercially defined manufacturing conditions. The key variables studied are the cell suspension hold time prior to centrifugation, the relative centrifugal force (RCF), time of centrifugation, cell pellet resuspension velocities, and number of resuspension passes. The cell critical quality attributes studied are the cell membrane integrity and the presence of selected surface markers. Greater hold times and higher RCF values for longer spin times all led to the increased loss of cell membrane integrity. However, this loss was found to occur during intense cell resuspension rather than the preceding centrifugation stage. Controlled resuspension at low stress conditions below a possible critical stress point led to essentially complete cell recovery even at conditions of extreme centrifugation (e.g., RCF of 10000 g for 30 mins) and long (~2 h) holding times before centrifugation. The susceptibility to cell loss during resuspension under conditions of high stress depended on cell type and the age of cells before centrifugation and the level of matrix crosslinking within the cell pellet as determined by the presence of detachment enzymes or possibly the nature of the resuspension medium. Changes in cell surface markers were significant in some cases but to a lower extent than loss of cell membrane integrity. Biotechnol. Bioeng. 2015;112: 997-1011. © 2014 Wiley Periodicals, Inc
Bound States of the q-Deformed AdS5 x S5 Superstring S-matrix
The investigation of the q deformation of the S-matrix for excitations on the
string world sheet in AdS5 x S5 is continued. We argue that due to the lack of
Lorentz invariance the situation is more subtle than in a relativistic theory
in that the nature of bound states depends on their momentum. At low enough
momentum |p|<E the bound states transform in the anti-symmetric representation
of the super-algebra symmetry and become the solitons of the Pohlmeyer reduced
theory in the relativistic limit. At a critical momentum |p|=E they become
marginally unstable, and at higher momenta the stable bound states are in the
symmetric representation and become the familiar magnons in the string limit as
q->1. This subtlety fixes a problem involving the consistency of crossing
symmetry with the relativistic limit found in earlier work. With mirror
kinematics, obtained after a double Wick rotation, the bound state structure is
simpler and there are no marginally unstable bound states.Comment: 25 page
IR Dust Bubbles: Probing the Detailed Structure and Young Massive Stellar Populations of Galactic HII Regions
We present an analysis of wind-blown, parsec-sized, mid-infrared bubbles and
associated star-formation using GLIMPSE/IRAC, MIPSGAL/MIPS and MAGPIS/VLA
surveys. Three bubbles from the Churchwell et al. (2006) catalog were selected.
The relative distribution of the ionized gas (based on 20 cm emission), PAH
emission (based on 8 um, 5.8 um and lack of 4.5 um emission) and hot dust (24
um emission) are compared. At the center of each bubble there is a region
containing ionized gas and hot dust, surrounded by PAHs. We identify the likely
source(s) of the stellar wind and ionizing flux producing each bubble based
upon SED fitting to numerical hot stellar photosphere models. Candidate YSOs
are also identified using SED fitting, including several sites of possible
triggered star formation.Comment: 37 pages, 17 figure
Infrared Helium-Hydrogen Line Ratios as a Measure of Stellar Effective Temperature
We have observed a large sample of compact planetary nebulae in the
near-infrared to determine how the 2^1P-2^1S HeI line at 2.058um varies as a
function of stellar effective temperature, Teff. The ratio of this line with HI
Br g at 2.166um has often been used as a measure of the highest Teff present in
a stellar cluster, and hence on whether there is a cut-off in the stellar
initial mass function at high masses. However, recent photoionisation modelling
has revealed that the behaviour of this line is more complex than previously
anticipated. Our work shows that in most aspects the photoionisation models are
correct. In particular, we confirm the weakening of the 2^1P-2^1S as Teff
increases beyond 40000K. However, in many cases the model underpredicts the
observed ratio when we consider the detailed physical conditions in the
individual planetary nebulae. Furthermore, there is evidence that there is
still significant 2^1P-2^1S HeI line emission even in the planetary nebulae
with very hot (Teff>100000K) central stars. It is clear from our work that this
ratio cannot be considered as a reliable measure of effective temperature on
its own.Comment: 24 pages 11 figures (in 62 separate postscript files) Accepted for
publication in Monthly Notices of the Royal Astronomical Societ
Near Infrared Spectra of Compact Planetary Nebulae
This paper continues our study of the behaviour of near infrared helium
recombination lines in planetary nebula. We find that the 1.7007um 4^3D-3^3P
HeI line is a good measure of the HeI recombination rate, since it varies
smoothly with the effective temperature of the central star. We were unable to
reproduce the observed data using detailed photoionisation models at both low
and high effective temperatures, but plausible explanations for the difference
exist for both. We therefore conclude that this line could be used as an
indicator of the effective temperature in obscured nebula. We also
characterised the nature of the molecular hydrogen emission present in a
smaller subset of our sample. The results are consistent with previous data
indicating that ultraviolet excitation rather than shocks is the main cause of
the molecular hydrogen emission in planetary nebulae.Comment: Accepted for publication in MNRA
On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency
Concurrent systems are notoriously difficult to analyze, and technological
advances such as weak memory architectures greatly compound this problem. This
has renewed interest in partial order semantics as a theoretical foundation for
formal verification techniques. Among these, symbolic techniques have been
shown to be particularly effective at finding concurrency-related bugs because
they can leverage highly optimized decision procedures such as SAT/SMT solvers.
This paper gives new fundamental results on partial order semantics for
SAT/SMT-based symbolic encodings of weak memory concurrency. In particular, we
give the theoretical basis for a decision procedure that can handle a fragment
of concurrent programs endowed with least fixed point operators. In addition,
we show that a certain partial order semantics of relaxed sequential
consistency is equivalent to the conjunction of three extensively studied weak
memory axioms by Alglave et al. An important consequence of this equivalence is
an asymptotically smaller symbolic encoding for bounded model checking which
has only a quadratic number of partial order constraints compared to the
state-of-the-art cubic-size encoding.Comment: 15 pages, 3 figure
- …