54 research outputs found
Revealing the maternal demographic history of Panthera leo using ancient DNA and a spatially explicit genealogical analysis
Background: Understanding the demographic history of a population is critical to conservation and to our broader understanding of evolutionary processes. For many tropical large mammals, however, this aim is confounded by the absence of fossil material and by the misleading signal obtained from genetic data of recently fragmented and isolated populations. This is particularly true for the lion which as a consequence of millennia of human persecution, has large gaps in its natural distribution and several recently extinct populations. Results: We sequenced mitochondrial DNA from museum-preserved individuals, including the extinct Barbary lion (Panthera leo leo) and Iranian lion (P. l. persica), as well as lions from West and Central Africa. We added these to a broader sample of lion sequences, resulting in a data set spanning the historical range of lions. Our Bayesian phylogeographical analyses provide evidence for highly supported, reciprocally monophyletic lion clades. Using a molecular clock, we estimated that recent lion lineages began to diverge in the Late Pleistocene. Expanding equatorial rainforest probably separated lions in South and East Africa from other populations. West African lions then expanded into Central Africa during periods of rainforest contraction. Lastly, we found evidence of two separate incursions into Asia from North Africa, first into India and later into the Middle East. Conclusions: We have identified deep, well-supported splits within the mitochondrial phylogeny of African lions, arguing for recognition of some regional populations as worthy of independent conservation. More morphological and nuclear DNA data are now needed to test these subdivisions.European Union�s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. FP7-PEOPLE-2011-IEF-298820.Scopu
American Mastodon Mitochondrial Genomes Suggest Multiple Dispersal Events in Response to Pleistocene Climate Oscillations
Pleistocene glacial-interglacial cycles are correlated with dramatic temperature oscillations. Examining how species responded to these natural fluctuations can provide valuable insights into the impacts of present-day anthropogenic climate change. Here we present a phylogeographic study of the extinct American mastodon (Mammut americanum), based on 35 complete mitochondrial genomes. These data reveal the presence of multiple lineages within this species, including two distinct clades from eastern Beringia. Our molecular date estimates suggest that these clades arose at different times, supporting a pattern of repeated northern expansion and local extirpation in response to glacial cycling. Consistent with this hypothesis, we also note lower levels of genetic diversity among northern mastodons than in endemic clades south of the continental ice sheets. The results of our study highlight the complex relationships between population dispersals and climate change, and can provide testable hypotheses for extant species expected to experience substantial biogeographic impacts from rising temperatures
Increased Mutation Rate Is Linked to Genome Reduction in Prokaryotes
The evolutionary processes that drive variation in genome size across the tree of life remain unresolved. Effective population size (Ne) is thought to play an important role in shaping genome size [1, 2, 3]—a key example being the reduced genomes of insect endosymbionts, which undergo population bottlenecks during transmission [4]. However, the existence of reduced genomes in marine and terrestrial prokaryote species with large Ne indicate that genome reduction is influenced by multiple processes [3]. One candidate process is enhanced mutation rate, which can increase adaptive capacity but can also promote gene loss. To investigate evolutionary forces associated with prokaryotic genome reduction, we performed molecular evolutionary and phylogenomic analyses of nine lineages from five bacterial and archaeal phyla. We found that gene-loss rate strongly correlated with synonymous substitution rate (a proxy for mutation rate) in seven of the nine lineages. However, gene-loss rate showed weak or no correlation with the ratio of nonsynonymous/synonymous substitution rate (dN/dS). These results indicate that genome reduction is largely associated with increased mutation rate, while the association between gene loss and changes in Ne is less well defined. Lineages with relatively high dS and dN, as well as smaller genomes, lacked multiple DNA repair genes, providing a proximate cause for increased mutation rates. Our findings suggest that similar mechanisms drive genome reduction in both intracellular and free-living prokaryotes, with implications for developing a comprehensive theory of prokaryote genome size evolution
Extant and extinct bilby genomes combined with Indigenous knowledge improve conservation of a unique Australian marsupial
Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura). We developed and tested a scat single-nucleotide polymorphism panel to inform current and future conservation actions, undertake ecological assessments and improve our understanding of Ninu genetic diversity in managed and wild populations. We also assessed the beneficial impact of translocations in the metapopulation (N = 363 Ninu). Resequenced genomes (temperate Ninu, 6; semi-arid Ninu, 6; and Yallara, 4) revealed two major population crashes during global cooling events for both species and differences in Ninu genes involved in anatomical and metabolic pathways. Despite their 45-year captive history, Ninu have fewer long runs of homozygosity than other larger mammals, which may be attributable to their boom-bust life history. Here we investigated the unique Ninu biology using 12 tissue transcriptomes revealing expression of all 115 conserved eutherian chorioallantoic placentation genes in the uterus, an XYY sex chromosome system and olfactory receptor gene expansions. Together, we demonstrate the holistic value of genomics in improving key conservation actions, understanding unique biological traits and developing tools for Indigenous rangers to monitor remote wild populations
Neolithic Mitochondrial Haplogroup H Genomes and the Genetic Origins of Europeans
Haplogroup H dominates present-day Western European mitochondrial DNA variability (\u3e40%), yet was less common (~19%) among Early Neolithic farmers (~5450 BC) and virtually absent in Mesolithic hunter-gatherers. Here we investigate this major component of the maternal population history of modern Europeans and sequence 39 complete haplogroup H mitochondrial genomes from ancient human remains. We then compare this ‘real-time’ genetic data with cultural changes taking place between the Early Neolithic (~5450 BC) and Bronze Age (~2200 BC) in Central Europe. Our results reveal that the current diversity and distribution of haplogroup H were largely established by the Mid Neolithic (~4000 BC), but with substantial genetic contributions from subsequent pan-European cultures such as the Bell Beakers expanding out of Iberia in the Late Neolithic (~2800 BC). Dated haplogroup H genomes allow us to reconstruct the recent evolutionary history of haplogroup H and reveal a mutation rate 45% higher than current estimates for human mitochondria
The water lily genome and the early evolution of flowering plants
Water lilies belong to the angiosperm order Nymphaeales. Amborellales,
Nymphaeales and Austrobaileyales together form the so-called ANA-grade of
angiosperms, which are extant representatives of lineages that diverged the earliest
from the lineage leading to the extant mesangiosperms1–3. Here we report the
409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata).
Our phylogenomic analyses support Amborellales and Nymphaeales as successive
sister lineages to all other extant angiosperms. The N. colorata genome and 19 other
water lily transcriptomes reveal a Nymphaealean whole-genome duplication event,
which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes
retained from this whole-genome duplication are homologues of genes that regulate
flowering transition and flower development. The broad expression of homologues of
floral ABCE genes in N. colorata might support a similarly broadly active ancestral
ABCE model of floral organ determination in early angiosperms. Water lilies have
evolved attractive floral scents and colours, which are features shared with
mesangiosperms, and we identified their putative biosynthetic genes in N. colorata.
The chemical compounds and biosynthetic genes behind floral scents suggest that
they have evolved in parallel to those in mesangiosperms. Because of its unique
phylogenetic position, the N. colorata genome sheds light on the early evolution of
angiosperms.Supplementary Tables: This file contains Supplementary Tables 1-21.National Natural Science Foundation of China, the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZW201909) and State Key Laboratory of Tree Genetics and Breeding, the Fujian provincial government in China, the European Union Seventh Framework Programme (FP7/2007-2013) under European Research Council Advanced Grant Agreement and the Special Research Fund of Ghent University.http://www.nature.com/naturecommunicationsam2021BiochemistryGeneticsMicrobiology and Plant Patholog
An examination of phylogenetic models of substitution rate variation among lineages
Molecular evolutionary rates can show significant variation among lineages, complicating the task of estimating substitution rates and divergence times using phylogenetic methods. Accordingly, relaxed molecular clock models have been developed to accommodate such rate heterogeneity, but these often make the assumption of rate autocorrelation among lineages. In this paper, I examine the validity of this assumption
- …