1,848 research outputs found
Towards a Systematic Account of Different Semantics for Logic Programs
In [Hitzler and Wendt 2002, 2005], a new methodology has been proposed which
allows to derive uniform characterizations of different declarative semantics
for logic programs with negation. One result from this work is that the
well-founded semantics can formally be understood as a stratified version of
the Fitting (or Kripke-Kleene) semantics. The constructions leading to this
result, however, show a certain asymmetry which is not readily understood. We
will study this situation here with the result that we will obtain a coherent
picture of relations between different semantics for normal logic programs.Comment: 20 page
Dimensions of Neural-symbolic Integration - A Structured Survey
Research on integrated neural-symbolic systems has made significant progress
in the recent past. In particular the understanding of ways to deal with
symbolic knowledge within connectionist systems (also called artificial neural
networks) has reached a critical mass which enables the community to strive for
applicable implementations and use cases. Recent work has covered a great
variety of logics used in artificial intelligence and provides a multitude of
techniques for dealing with them within the context of artificial neural
networks. We present a comprehensive survey of the field of neural-symbolic
integration, including a new classification of system according to their
architectures and abilities.Comment: 28 page
Towards a unified theory of logic programming semantics: Level mapping characterizations of selector generated models
Currently, the variety of expressive extensions and different semantics
created for logic programs with negation is diverse and heterogeneous, and
there is a lack of comprehensive comparative studies which map out the
multitude of perspectives in a uniform way. Most recently, however, new
methodologies have been proposed which allow one to derive uniform
characterizations of different declarative semantics for logic programs with
negation. In this paper, we study the relationship between two of these
approaches, namely the level mapping characterizations due to [Hitzler and
Wendt 2005], and the selector generated models due to [Schwarz 2004]. We will
show that the latter can be captured by means of the former, thereby supporting
the claim that level mappings provide a very flexible framework which is
applicable to very diversely defined semantics.Comment: 17 page
Formal Concept Analysis and Resolution in Algebraic Domains
We relate two formerly independent areas: Formal concept analysis and logic
of domains. We will establish a correspondene between contextual attribute
logic on formal contexts resp. concept lattices and a clausal logic on coherent
algebraic cpos. We show how to identify the notion of formal concept in the
domain theoretic setting. In particular, we show that a special instance of the
resolution rule from the domain logic coincides with the concept closure
operator from formal concept analysis. The results shed light on the use of
contexts and domains for knowledge representation and reasoning purposes.Comment: 14 pages. We have rewritten the old version according to the
suggestions of some referees. The results are the same. The presentation is
completely differen
The Integration of Connectionism and First-Order Knowledge Representation and Reasoning as a Challenge for Artificial Intelligence
Intelligent systems based on first-order logic on the one hand, and on
artificial neural networks (also called connectionist systems) on the other,
differ substantially. It would be very desirable to combine the robust neural
networking machinery with symbolic knowledge representation and reasoning
paradigms like logic programming in such a way that the strengths of either
paradigm will be retained. Current state-of-the-art research, however, fails by
far to achieve this ultimate goal. As one of the main obstacles to be overcome
we perceive the question how symbolic knowledge can be encoded by means of
connectionist systems: Satisfactory answers to this will naturally lead the way
to knowledge extraction algorithms and to integrated neural-symbolic systems.Comment: In Proceedings of INFORMATION'2004, Tokyo, Japan, to appear. 12 page
A Categorical View on Algebraic Lattices in Formal Concept Analysis
Formal concept analysis has grown from a new branch of the mathematical field
of lattice theory to a widely recognized tool in Computer Science and
elsewhere. In order to fully benefit from this theory, we believe that it can
be enriched with notions such as approximation by computation or
representability. The latter are commonly studied in denotational semantics and
domain theory and captured most prominently by the notion of algebraicity, e.g.
of lattices. In this paper, we explore the notion of algebraicity in formal
concept analysis from a category-theoretical perspective. To this end, we build
on the the notion of approximable concept with a suitable category and show
that the latter is equivalent to the category of algebraic lattices. At the
same time, the paper provides a relatively comprehensive account of the
representation theory of algebraic lattices in the framework of Stone duality,
relating well-known structures such as Scott information systems with further
formalisms from logic, topology, domains and lattice theory.Comment: 36 page
- …