184 research outputs found

    Radiative cooling implementations in simulations of primordial star formation

    Full text link
    We study the thermal evolution of primordial star-forming gas clouds using three-dimensional cosmological simulations. We critically examine how assumptions and approximations made in calculating radiative cooling rates affect the dynamics of the collapsing gas clouds. We consider two important molecular hydrogen cooling processes that operate in a dense primordial gas; H_2 line cooling and continuum cooling by H_2 collision-induced emission. To calculate the optically thick cooling rates, we follow the Sobolev method for the former, whereas we perform ray-tracing for the latter. We also run the same set of simulations using simplified fitting functions for the net cooling rates. We compare the simulation results in detail. We show that the time- and direction-dependence of hydrodynamic quantities such as gas temperature and local velocity gradients significantly affects the optically thick cooling rates. Gravitational collapse of the cloud core is accelerated when the cooling rates are calculated by using the fitting functions. The structure and evolution of the central pre-stellar disk are also affected. We conclude that physically motivated implementations of radiative transfer are necessary to follow accurately the thermal and chemical evolution of a primordial gas to high densities.Comment: 25 pages, 12 figures, To appear in Ap

    Supersonic Gas Streams Enhance the Formation of Massive Black Holes in the Early Universe

    Get PDF
    The origin of super-massive black holes in the early universe remains poorly understood.Gravitational collapse of a massive primordial gas cloud is a promising initial process,but theoretical studies have difficulty growing the black hole fast enough.We report numerical simulations of early black hole formation starting from realistic cosmological conditions.Supersonic gas motions left over from the Big Bang prevent early gas cloud formation until rapid gas condensation is triggered in a proto-galactic halo. A protostar is formed in the dense, turbulent gas cloud, and it grows by sporadic mass accretion until it acquires 34,000 solar masses.The massive star ends its life with a catastrophic collapse to leave a black hole -- a promising seed for the formation of a monstrous black hole.Comment: Published in Science, combined with updated SOM, additional images and movies are available at http://www-utap.phys.s.u-tokyo.ac.jp/naoki.yoshida/Blackhole/0929e.htm
    corecore