2,233 research outputs found

    Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope

    Full text link
    We conducted local anodic oxidation (LAO) lithography in single-layer, bilayer, and multilayer graphene using tapping-mode atomic force microscope. The width of insulating oxidized area depends systematically on the number of graphene layers. An 800-nm-wide bar-shaped device fabricated in single-layer graphene exhibits the half-integer quantum Hall effect. We also fabricated a 55-nm-wide graphene nanoribbon (GNR). The conductance of the GNR at the charge neutrality point was suppressed at low temperature, which suggests the opening of an energy gap due to lateral confinement of charge carriers. These results show that LAO lithography is an effective technique for the fabrication of graphene nanodevices.Comment: 4 pages, 4 figure

    Effect of aromatic hydrocarbon addition on in situ powder-in-tube processed MgB2 tapes

    Full text link
    We fabricated in situ powder-in-tube processed MgB2/Fe tapes using aromatic hydrocarbon of benzene, naphthalene, and thiophene as additives, and investigated the superconducting properties. We found that these aromatic hydrocarbons were very effective for increasing the Jc values. The Jc values of 20mol% benzene-added tapes reached 130A/mm2 at 4.2K and 10T. This value was almost comparable to that of 10mol% SiC-added tapes and about four times higher than that of tapes with no additions. Microstructure analyses suggest that this Jc enhancement is due to both the substitution of carbon for boron in MgB2 and the smaller MgB2 grain size.Comment: 6 pages, 4 figure

    Local magnetic anisotropy in BaFe2_2As2_2: a polarized inelastic neutron scattering study

    Full text link
    The anisotropy of the magnetic excitations in BaFe2_2As2_2 was studied by polarized inelastic neutron scattering which allows one to separate the components of the magnetic response. Despite the in-plane orientation of the static ordered moment we find the in-plane polarized magnons to exhibit a larger gap than the out-of-plane polarized ones indicating very strong single-ion anisotropy within the layers. It costs more energy to rotate a spin within the orthorhombic {\it a-b} plane than rotating it perpendicular to the FeAs layers.Comment: 4 pages, 4 figure

    Spin transport through a single self-assembled InAs quantum dot with ferromagnetic leads

    Full text link
    We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evidence for spin transport through a single semiconductor QD. The TMR ratio and the curve shapes are varied by changing the gate voltage.Comment: 4 pages, 3 figure

    Kondo Universal Scaling for a Quantum Dot Coupled to Superconducting Leads

    Full text link
    We study competition between the Kondo effect and superconductivity in a single self-assembled InAs quantum dot contacted with Al lateral electrodes. Due to Kondo enhancement of Andreev reflections the zero-bias anomaly develops sidepeaks, separated by the superconducting gap energy Delta. For ten valleys of different Kondo temperature T_K we tune the gap Delta with an external magnetic field. We find that the zero-bias conductance in each case collapses onto a single curve with Delta/kT_K as the only relevant energy scale, providing experimental evidence for universal scaling in this system.Comment: 4 pages, 3 figure

    Randomly Diluted e_g Orbital-Ordered Systems

    Full text link
    Dilution effects on the long-range ordered state of the doubly degenerate ege_g orbital are investigated. Quenched impurities without the orbital degree of freedom are introduced in the orbital model where the long-range order is realized by the order-from-disorder mechanism. It is shown by the Monte-Carlo simulation and the cluster-expansion method that a decrease in the orbital ordering temperature by dilution is remarkable in comparison with that in the randomly diluted spin models. Tiltings of orbitals around impurity cause this unique dilution effects on the orbital systems. The present theory provides a new view point for the recent experiments in KCu1−x_{1-x}Znx_xF3_3.Comment: 4 pages, 4 figure

    Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction

    Full text link
    We measure the non-dissipative supercurrent in a single InAs self-assembled quantum dot (QD) coupled to superconducting leads. The QD occupation is both tuned by a back-gate electrode and lateral side-gate. The geometry of the side-gate allows tuning of the QD-lead tunnel coupling in a region of constant electron number with appropriate orbital state. Using the side-gate effect we study the competition between Kondo correlations and superconducting pairing on the QD, observing a decrease in the supercurrent when the Kondo temperature is reduced below the superconducting energy gap in qualitative agreement with theoretical predictions
    • …
    corecore