12 research outputs found
Electrochemical CO₂ Reduction to CO Catalyzed by 2D Nanostructures
Electrochemical CO₂ reduction towards value-added chemical feedstocks has been extensively studied in recent years to resolve the energy and environmental problems. The practical application of electrochemical CO₂ reduction technology requires a cost-effective, highly efficient, and robust catalyst. To date, vigorous research have been carried out to increase the proficiency of electrocatalysts. In recent years, two-dimensional (2D) graphene and transition metal chalcogenides (TMCs) have displayed excellent activity towards CO₂ reduction. This review focuses on the recent progress of 2D graphene and TMCs for selective electrochemical CO₂ reduction into CO
Electrochemical CO₂ Reduction to CO Catalyzed by 2D Nanostructures
Electrochemical CO₂ reduction towards value-added chemical feedstocks has been extensively studied in recent years to resolve the energy and environmental problems. The practical application of electrochemical CO₂ reduction technology requires a cost-effective, highly efficient, and robust catalyst. To date, vigorous research have been carried out to increase the proficiency of electrocatalysts. In recent years, two-dimensional (2D) graphene and transition metal chalcogenides (TMCs) have displayed excellent activity towards CO₂ reduction. This review focuses on the recent progress of 2D graphene and TMCs for selective electrochemical CO₂ reduction into CO
Electrochemical CO2 Reduction to CO Catalyzed by 2D Nanostructures
Electrochemical CO2 reduction towards value-added chemical feedstocks has been extensively studied in recent years to resolve the energy and environmental problems. The practical application of electrochemical CO2 reduction technology requires a cost-effective, highly efficient, and robust catalyst. To date, vigorous research have been carried out to increase the proficiency of electrocatalysts. In recent years, two-dimensional (2D) graphene and transition metal chalcogenides (TMCs) have displayed excellent activity towards CO2 reduction. This review focuses on the recent progress of 2D graphene and TMCs for selective electrochemical CO2 reduction into CO. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.1
Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction
Perovskite materials have been widely considered as emerging photocatalysts for CO2 reduction due to their extraordinary physicochemical and optical properties. Perovskites offer a wide range of benefits compared to conventional semiconductors, including tunable bandgap, high surface energy, high charge carrier lifetime, and flexible crystal structure, making them ideal for high-performance photocatalytic CO2 reduction. Notably, defect-induced perovskites, for example, crystallographic defects in perovskites, have given excellent opportunities to tune perovskites’ catalytic properties. Recently, lead (Pb) halide perovskite and their composites or heterojunction with other semiconductors, metal nanoparticles (NPs), metal complexes, graphene, and metal-organic frameworks (MOFs) have been well established for CO2 conversion. Besides, various halide perovskites have come under focus to avoid the toxicity of lead-based materials. Therefore, we reviewed the recent progress made by Pb and Pb-free halide perovskites in photo-assisted CO2 reduction into useful chemicals. We also discussed the importance of various factors like change in solvent, structure defects, and compositions in the fabrication of halide perovskites to efficiently convert CO2 into value-added products
Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction
Perovskite materials have been widely considered as emerging photocatalysts for CO2 reduction due to their extraordinary physicochemical and optical properties. Perovskites offer a wide range of benefits compared to conventional semiconductors, including tunable bandgap, high surface energy, high charge carrier lifetime, and flexible crystal structure, making them ideal for high-performance photocatalytic CO2 reduction. Notably, defect-induced perovskites, for example, crystallographic defects in perovskites, have given excellent opportunities to tune perovskites' catalytic properties. Recently, lead (Pb) halide perovskite and their composites or heterojunction with other semiconductors, metal nanoparticles (NPs), metal complexes, graphene, and metal-organic frameworks (MOFs) have been well established for CO2 conversion. Besides, various halide perovskites have come under focus to avoid the toxicity of lead-based materials. Therefore, we reviewed the recent progress made by Pb and Pb-free halide perovskites in photo-assisted CO2 reduction into useful chemicals. We also discussed the importance of various factors like change in solvent, structure defects, and compositions in the fabrication of halide perovskites to efficiently convert CO2 into value-added products.1
Two-dimensional metal carbides for electro- and photocatalytic CO<sub>2</sub> reduction: Review
Two-dimensional metal carbides have recently emerged as a promising catalyst for photo- and electrocatalytic CO2 reduction processes due to their high surface area to volume ratio and the vast number of active sites. The surface engineering of transition metal carbides (TMCs) governs the selectivity of specific hydrocarbon formation via a CO2 reduction reaction. Herein, we briefly discuss theoretical models based on the Density Functional Theory (DFT) studies and practical perspective on optimizing surface engineered TMCs and their composites, including tungsten carbide (WC), titanium carbide (TiC), and molybdenum carbide (MoC). In this consolidated review, we provide a reference guide to the key aspects and the most recent data on the properties of 2D metal carbides for the development of an efficient catalyst for photo- and electrocatalytic CO2 reduction. © 2021 Elsevier Ltd1
Single-Atom Catalysts (SACs) for Photocatalytic CO2 Reduction with H2O: Activity, Product Selectivity, Stability, and Surface Chemistry
In recent years, single-atom catalysts (SACs) have attracted the interest of researchers owing to their suitability for various catalytic applications. For instance, their optoelectronic features, site-specific activity, and cost-effectiveness make SACs ideal for photocatalytic CO2 reduction. The activity, product selectivity, and photostability of SACs depend on various factors such as the nature of the metal/support material, the interaction between the metal atoms and support, light-harvesting ability, charge separation behavior, CO2 adsorption ability, active sites, and defects. Consequently, it is necessary to investigate these factors in depth to elucidate the working principle(s) of SACs for catalytic applications. Herein, the recent progress in the development of SACs for photocatalytic CO2 reduction with H2O is reviewed. First, a brief overview of CO2 photoreduction and SACs for CO2 conversion is provided. Several synthesis strategies and useful techniques for characterizing SACs employed in heterogeneous catalysis are then described. Next, the challenges of SACs for photocatalytic CO2 reduction and related optimization strategies, in terms of activity, product selectivity, and stability, are explored. The progress in the development of noble metal– and transition metal–based SACs and dual-SACs for photocatalytic CO2 reduction is discussed. Finally, the prospects of SACs for CO2 reduction are considered. © 2022 Wiley-VCH GmbH.FALS
Elemental-Doped Catalysts for Photoelectrochemical CO<sub>2</sub> Conversion to Solar Fuels
Solar-driven photoelectrochemical (PEC) carbon dioxide (CO2) conversion to valuable chemicals, combining the advantages of photocatalysis and electrocatalysis, represents a promising approach toward establishing a carbon-neutral society and harnessing solar energy. Photoelectrode materials doped with metals and/or nonmetals have shown promise in achieving high CO2 reduction efficiency. Metal or nonmetal doping entails introducing a heteroelement into the semiconductor, thereby modifying the band potentials of the semiconductor through the addition of a defective state. This alteration may improve the charge transfer kinetics of the catalysis. Furthermore, doping aids in creating active CO2 adsorption offers anchoring sites for CO2 molecules and can promote product selectivity. This review aims to provide a concise summary of elemental-doped photoelectrodes for converting CO2 into fuels through PEC processes. Several key factors affecting the performance of PEC CO2 reduction are discussed, including the interaction of reactants with catalysts, reaction conditions, and the impact of the photoelectrode. Moreover, various PEC CO2 reduction systems are discussed, with a specific focus on enhancing the efficiency of CO2 reduction. Finally, a summary of key considering aspects for further development of the PEC CO2 reduction is provided.</p
A novel N-doped graphene oxide enfolded reduced titania for highly stable and selective gas-phase photocatalytic CO2 reduction into CH4: An in-depth study on the interfacial charge transfer mechanism
A desire for renewable alternatives to fossil fuels can be achieved by utilizing CO2, H2O, and solar energy to generate solar fuels. A novel N-doped graphene oxide enfolded reduced titania (NGO-RT) composite was demonstrated for photocatalytic CO2 reduction into CH4. Later, a small amount of Pt NPs was deposited on NGORT that increases the catalytic performance towards CH4 formation. The optimized Pt-1.0%-NGO-RT catalyst displayed a selective visible-light CO2 reduction into CH4 using a flow reactor system with approximate to 12 and approximate to 2 times higher activity than pristine RT and NGO-RT, respectively. The catalyst demonstrated long-term stability over 35 h. The photo-induced CO2 reduction mechanism was first validated through the electron transfer process, where charge trapping by Ti3+ states near the conduction band of RT plays a vital role in the selective CH(4 )evolution. These trapped electrons transfer from RT to the closely connected interface of N-doped graphene oxide and Pt NPs to restrict the recombination of electron/hole pair. The improved catalytic performance can be attributed to RT's downward band bending at the NGO-RT interface, where electron transfer from RT to NGO decreases the charge recombination.1
Elemental‐doped catalysts for photoelectrochemical CO<sub>2</sub> conversion to solar fuels
Solar‐driven photoelectrochemical (PEC) carbon dioxide (CO2) conversion to valuable chemicals, combining the advantages of photocatalysis and electrocatalysis, represents a promising approach toward establishing a carbon‐neutral society and harnessing solar energy. Photoelectrode materials doped with metals and/or nonmetals have shown promise in achieving high CO2 reduction efficiency. Metal or nonmetal doping entails introducing a heteroelement into the semiconductor, thereby modifying the band potentials of the semiconductor through the addition of a defective state. This alteration may improve the charge transfer kinetics of the catalysis. Furthermore, doping aids in creating active CO2 adsorption offers anchoring sites for CO2 molecules and can promote product selectivity. This review aims to provide a concise summary of elemental‐doped photoelectrodes for converting CO2 into fuels through PEC processes. Several key factors affecting the performance of PEC CO2 reduction are discussed, including the interaction of reactants with catalysts, reaction conditions, and the impact of the photoelectrode. Moreover, various PEC CO2 reduction systems are discussed, with a specific focus on enhancing the efficiency of CO2 reduction. Finally, a summary of key considering aspects for further development of the PEC CO2 reduction is provided.</p