7,799 research outputs found
Changes in Cascading Failure Risk with Generator Dispatch Method and System Load Level
Industry reliability rules increasingly require utilities to study and
mitigate cascading failure risk in their system. Motivated by this, this paper
describes how cascading failure risk, in terms of expected blackout size,
varies with power system load level and pre-contingency dispatch. We used Monte
Carlo sampling of random branch outages to generate contingencies, and a model
of cascading failure to estimate blackout sizes. The risk associated with
different blackout sizes was separately estimated in order to separate small,
medium, and large blackout risk. Results from secure models of the IEEE
RTS case and a 2383 bus case indicate that blackout risk does not always
increase with load level monotonically, particularly for large blackout risk.
The results also show that risk is highly dependent on the method used for
generator dispatch. Minimum cost methods of dispatch can result in larger long
distance power transfers, which can increase cascading failure risk.Comment: Submitted to Transmission and Distribution Conference and Exposition
(T&D), 2014 IEEE PE
A Large Mass of H_2 in the Brightest Cluster Galaxy in Zwicky 3146
We present the Spitzer/IRS mid-infrared spectrum of the infrared-luminous (L_(IR) = 4 × 10^(11) L_☉) brightest cluster galaxy (BCG) in the X-ray-luminous cluster Zwicky 3146 (Z3146; z = 0.29). The spectrum shows strong aromatic emission features, indicating that the dominant source of the infrared luminosity is star formation. The most striking feature of the spectrum, however, is the exceptionally strong molecular hydrogen (H_2) emission lines, which seem to be shock-excited. The line luminosities and inferred warm H_2 gas mass (~10^(10) M_☉) are 6 times larger than those of NGC 6240, the most H_2-luminous galaxy at z ≲ 0.05. Together with the large amount of cold H_2 detected previously (~10^(11) M_☉), this indicates that the Z3146 BCG contains disproportionately large amounts of both warm and cold H_2 gas for its infrared luminosity, which may be related to the intracluster gas cooling process in the cluster core
Development of vibration design procedures for representative structural types Final technical report, Sep. 1965 - Jul. 1966
Effects of multimode and damping on random fatigue of cantilever beams and bracket
Multi-user indoor optical wireless communication system channel control using a genetic algorithm
A genetic algorithm controlled multispot transmitter is demonstrated that is capable of optimising the received power distribution for randomly aligned single element receivers in multiple fully diffuse optical wireless communications systems with multiple mobile users. Using a genetic algorithm to control the intensity of individual diffusion spots, system deployment environment changes, user movement and user alignment can be compensating for, with negligible impact on the bandwidth and root mean square delay spread. It is shown that the dynamic range, referenced against the peak received power, can be reduced up to 27% for empty environments and up to 26% when the users are moving. Furthermore, the effect of user movement, that can perturb the channel up to 8%, can be reduced to within 5% of the optimised case. Compared to alternative bespoke designs that are capable of mitigating optical wireless channel drawbacks, this method provides the possibility of cost-effectiveness for mass-produced receivers in applications where end-user friendliness and mobility are paramount
- …