242 research outputs found

    Rescuing defective vesicular trafficking protects against alpha-synuclein toxicity in cellular and animal models of Parkinson's disease

    Get PDF
    Studies in yeast are providing critical insights into the mechanisms of neurodegeneration in Parkinson's disease (PD). A recent study shows that disruption of vesicular trafficking between the endoplasmic reticulum (ER) and the Golgi, caused by the overexpression and/or aggregation of alpha-synuclein, is linked to degeneration of dopamine neurons. Overexpression of proteins that are known to enhance ER-to-Golgi transport rescue defective trafficking in yeast, worm, fly, and cellular models of PD

    Amyloidogenic protein-membrane interactions: mechanistic insight from model systems

    Get PDF
    The toxicity of amyloid-forming proteins is correlated with their interactions with cell membranes. Binding events between amyloidogenic proteins and membranes result in mutually disruptive structural perturbations, which are associated with toxicity. Membrane surfaces promote the conversion of amyloid-forming proteins into toxic aggregates, and amyloidogenic proteins, in turn, compromise the structural integrity of the cell membrane. Recent studies with artificial model membranes have highlighted the striking resemblance of the mechanisms of membrane permeabilization of amyloid-forming proteins to those of pore-forming toxins and antimicrobial peptides

    A century-old debate on protein aggregation and neurodegeneration enters the clinic

    Get PDF
    The correlation between neurodegenerative disease and protein aggregation in the brain has long been recognized, but a causal relationship has not been unequivocally established, in part because a discrete pathogenic aggregate has not been identified. The complexity of these diseases and the dynamic nature of protein aggregation mean that, despite progress towards understanding aggregation, its relationship to disease is difficult to determine in the laboratory. Nevertheless, drug candidates that inhibit aggregation are now being tested in the clinic. These have the potential to slow the progression of Alzheimer's disease, Parkinson's disease and related disorders and could, if administered presymptomatically, drastically reduce the incidence of these diseases. The clinical trials could also settle the century-old debate about causality

    Structure and function of the molecular chaperone Hsp104 from yeast

    Get PDF
    The molecular chaperone Hsp104 plays a central role in the clearance of aggregates after heat shock and the propagation of yeast prions. Hsp104's disaggregation activity and prion propagation have been linked to its ability to resolubilize or remodel protein aggregates. However, Hsp104 has also the capacity to catalyze protein aggregation of some substrates at specific conditions. Hence, it is a molecular chaperone with two opposing activities with respect to protein aggregation. In yeast models of Huntington's disease, Hsp104 is required for the aggregation and toxicity of polyglutamine (polyQ), but the expression of Hsp104 in cellular and animal models of Huntington's and Parkinson's disease protects against polyQ and alpha-synuclein toxicity. Therefore, elucidating the molecular determinants and mechanisms underlying the ability of Hsp104 to switch between these two activities is of critical importance for understanding its function and could provide insight into novel strategies aimed at preventing or reversing the formation of toxic protein aggregation in systemic and neurodegenerative protein misfolding diseases. Here, we present an overview of the current molecular models and hypotheses that have been proposed to explain the role of Hsp104 in modulating protein aggregation and prion propagation. The experimental approaches and the evidences presented so far in relation to these models are examined. Our primary objective is to offer a critical review that will inspire the use of novel techniques and the design of new experiments to proceed towards a qualitative and quantitative understanding of the molecular mechanisms underlying the multifunctional properties of Hsp104 in vivo

    Molecular electron microscopy approaches to elucidating the mechanisms of protein fibrillogenesis

    Get PDF
    Electron microscopy (EM) has played a central role in our current understanding of the mechanisms underlying the pathogenesis of several amyloid diseases, including Alzheimer's disease, Parkinson's disease, and prion diseases. In this chapter, we discuss the application of various EM techniques to monitor and characterize quaternary structural changes during amyloid fibril formation in vitro and the potential of extending some of these techniques to characterizing ex vivo material. In particular, we would like to bring to the attention of the reader two very powerful molecular EM techniques that remain under utilized by researchers in the amyloid community, namely scanning transmission electron microscopy and single particle molecular averaging EM. An overview of the strength and limitations of these techniques as tools for elucidating the structural basis of amyloid fibril formation will be presented

    Discovery of a novel aggregation domain in the huntingtin protein: implications for the mechanisms of Htt aggregation and toxicity

    Get PDF
    Aggravating aggregation: an N-terminal domain that is in close proximity to the polyQ domain in the huntingtin protein, htt105-138, is shown to be highly aggregation prone. Potential cross-talk between this domain and the polyQ region may play a central role in regulating the aggregation and toxicity of Htt-N-terminal fragments

    Amyloids go genomic: insights regarding the sequence determinants of prion formation from genome-wide studies

    Get PDF
    [Image: see text] The availability of fully sequenced genomes provides a useful starting point for identifying putative amyloid and prion forming sequences through genome-wide scans. With an inventory in hand, one can assess the amyloid forming potential and the functional consequences of amyloid formation for each sequence. Thus, advancing our understanding of how cells process and utilize deleterious and functional aggregates, respectively

    Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins?

    Get PDF
    Protein fibrillization is implicated in the pathogenesis of most, if not all, age-associated neurodegenerative diseases, but the mechanism(s) by which it triggers neuronal death is unknown. Reductionist in vitro studies suggest that the amyloid protofibril may be the toxic species and that it may amplify itself by inhibiting proteasome-dependent protein degradation. Although its pathogenic target has not been identified, the properties of the protofibril suggest that neurons could be killed by unregulated membrane permeabilization, possibly by a type of protofibril referred to here as the 'amyloid pore'. The purpose of this review is to summarize the existing supportive circumstantial evidence and to stimulate further studies designed to test the validity of this hypothesis

    Arab world needs its science diaspora

    Get PDF
    • …
    corecore