116 research outputs found
Generalized Contact Formalism Analysis of the ⁴He(e,e′pN) Reaction
Measurements of short-range correlations in exclusive 4He (e , e ′ p N) reactions are analyzed using the Generalized Contact Formalism (GCF). We consider both instant-form and light-cone formulations with both the AV18 and local N2LO(1.0) nucleon-nucleon (NN) potentials. We find that kinematic distributions, such as the reconstructed pair opening angle, recoil neutron momentum distribution, and pair center of mass motion, as well as the measured missing energy, missing mass distributions, are all well reproduced by GCF calculations. The missing momentum dependence of the measured 4He (e , e ′ p N) /4He (e , e ′ p) cross-section ratios, sensitive to nature of the NN interaction at short-distacnes, are also well reproduced by GCF calculations using either interaction and formulation. This gives credence to the GCF scale-separated factorized description of the short-distance many-body nuclear wave-function
Update of High Resolution (e,e'K^+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A
Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A
of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are
presented. The experiment provides high resolution spectra of excitation energy
for 12B_\Lambda, 16N_\Lambda, and 9Li_\Lambda hypernuclei obtained by
electroproduction of strangeness. A new theoretical calculation for
12B_\Lambda, final results for 16N_\Lambda, and discussion of the preliminary
results of 9Li_\Lambda are reported.Comment: 8 pages, 5 figures, submitted to the proceedings of Hyp-X Conferenc
Properties of the Lambda(1520) Resonance from High-Precision Electroproduction Data
High-resolution spectrometer measurements of the reaction H(e,e'K+)X at small
Q2 are used to extract the mass and width of the Lambda(1520). We investigate
the influence of various assumptions used in the extraction. The width appears
to be more sensitive to the assumptions than the mass. To reach a width
uncertainty about 1 MeV or better, one needs to know the structure of the
non-resonant background. Based on the new Jefferson Lab Hall A data, our final
values for the Breit-Wigner parameters are M = 1520.4 +- 0.6 (stat) +- 1.5
(syst) MeV, Gamma = 18.6 +- 1.9 (stat) +- 1 (syst) MeV. For the first time, we
also estimate the pole position for this resonance and find that both the pole
mass and width seem to be smaller than the Breit-Wigner values.Comment: 7 pages, 3 figures; corresponds to the published versio
Hard probes of short-range nucleon-nucleon correlations
One of the primary goals of nuclear physics is providing a complete
description of the structure of atomic nuclei. While mean-field calculations
provide detailed information on the nuclear shell structure for a wide range of
nuclei, they do not capture the complete structure of nuclei, in particular the
impact of small, dense structures in nuclei. The strong, short-range component
of the nucleon-nucleon potential yields hard interactions between nucleons
which are close together, generating a high-momentum tail to the nucleon
momentum distribution, with momenta well in excess of the Fermi momentum. This
high-momentum component of the nuclear wave-function is one of the most poorly
understood parts of nuclear structure.
Utilizing high-energy probes, we can isolate scattering from high-momentum
nucleons, and use these measurements to examine the structure and impact of
short-range nucleon-nucleon correlations. Over the last decade we have moved
from looking for evidence of such short-range structures to mapping out their
strength in nuclei and examining their isospin structure. This has been made
possible by high-luminosity and high-energy accelerators, coupled with an
improved understanding of the reaction mechanism issues involved in studying
these structures. We review the general issues related to short-range
correlations, survey recent experiments aimed at probing these short-range
structures, and lay out future possibilities to further these studies.Comment: Review article to appear in Prog.Part.Nucl.Phys. 77 pages, 33 figure
Cross Section Measurements of Charged Pion Photoproduction in Hydrogen and Deuterium from 1.1 to 5.5 GeV
The differential cross section for the gamma +n --> pi- + p and the gamma + p
--> pi+ n processes were measured at Jefferson Lab. The photon energies ranged
from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4
GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The
pi- and pi+ photoproduction data both exhibit a global scaling behavior at high
energies and high transverse momenta, consistent with the constituent counting
rule prediction and the existing pi+ data. The data suggest possible
substructure of the scaling behavior, which might be oscillations around the
scaling value. The data show an enhancement in the scaled cross section at
center-of-mass energy near 2.2 GeV. The differential cross section ratios at
high energies and high transverse momenta can be described by calculations
based on one-hard-gluon-exchange diagrams.Comment: 18 pages, 19 figure
Probing the high momentum component of the deuteron at high Q^2
The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was
measured over a kinematical range that made it possible to study this reaction
for a set of fixed missing momenta as a function of the neutron recoil angle
theta_nq and to extract missing momentum distributions for fixed values of
theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg)
recent calculations, which predict that final state interactions are small,
agree reasonably well with the experimental data. Therefore these experimental
reduced cross sections provide direct access to the high momentum component of
the deuteron momentum distribution in exclusive deuteron
electro-disintegration.Comment: 5 pages, 2 figure
The Charge Form Factor of the Neutron from the Reaction \pol{2H}(\pol{e},e'n)p
We report on the first measurement of spin-correlation parameters in
quasifree electron scattering from vector-polarized deuterium. Polarized
electrons were injected into an electron storage ring at a beam energy of
720~MeV. A Siberian snake was employed to preserve longitudinal polarization at
the interaction point. Vector-polarized deuterium was produced by an atomic
beam source and injected into an open-ended cylindrical cell, internal to the
electron storage ring. The spin correlation parameter A^V_{ed} was measured for
the reaction \pol{2H}(\pol{e},e'n)p at a four-momentum transfer squared of 0.21
(GeV/c)^2 from which a value for the charge form factor of the neutron was
extracted.Comment: 4 pages, 5 file
Hard Photodisintegration of a Proton Pair
We present a study of high energy photodisintegration of proton-pairs through
the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used
in kinematics corresponding to a proton pair with high relative momentum and a
neutron nearly at rest. The s-11 scaling of the cross section, as predicted by
the constituent counting rule for two nucleon photodisintegration, was observed
for the first time. The onset of the scaling is at a higher energy and the
cross section is significantly lower than for deuteron (pn pair)
photodisintegration. For photon energies below the scaling region, the scaled
cross section was found to present a strong energy-dependent structure not
observed in deuteron photodisintegration.Comment: 7 pages, 3 figures, for submission to Phys. Lett.
Exclusive Neutral Pion Electroproduction in the Deeply Virtual Regime
We present measurements of the ep->ep pi^0 cross section extracted at two
values of four-momentum transfer Q^2=1.9 GeV^2 and Q^2=2.3 GeV^2 at Jefferson
Lab Hall A. The kinematic range allows to study the evolution of the extracted
hadronic tensor as a function of Q^2 and W. Results will be confronted with
Regge inspired calculations and GPD predictions. An intepretation of our data
within the framework of semi-inclusive deep inelastic scattering has also been
attempted
- …