83 research outputs found

    On the Antibacterial Properties of Retting Bacteria

    Get PDF

    On the Oxidation of Propionic and Pyruvic Acids by Propionibacterium arabinosum

    Get PDF

    Analyses of Oviductal Pars Recta-Induced Fertilizability of Coelomic Eggs in Xenopus laevis

    Get PDF
    AbstractThe acquisition of fertilizability in coelomic eggs of Xenopus laevis has been shown to be correlated with the physical, biochemical, and ultrastructural alterations of the egg envelope [coelomic envelope (CE)] induced during the passage of eggs through the pars recta portion of the oviduct. However, no direct evidence that the pars recta renders eggs fertilizable has yet been presented. In this study, we show that coelomic eggs are highly fertilizable when they are incubated with continuous shaking for 4 h at 15°C in pars recta extract (PRE) derived from females prestimulated by pregnant mare serum gonadotropin. The PRE from pituitary-stimulated Bufo japonicus was as potent as homologous PRE in rendering Xenopus eggs fertilizable. Incubation of coelomic eggs in PRE for 30 min induced a dramatic increase in the rates of sperm binding to the envelope to a level equivalent to that exhibited by the envelope from uterine eggs (VEs). The CE-to-VE ultrastructural conversion and a 43k-to-41k hydrolysis of the envelope glycoprotein component started 5 min after, and were completed by 15 min after, the start of incubation in PRE and were accompanied by an exposure of a new N-terminal sequence typical to gp41. Thus, the biochemical and ultrastructural conversions and the sperm-binding activity of the envelope induced by PREs, although being prerequisite, were not sufficient to render coelomic eggs fully accessible to fertilizing sperm

    Effect of Intestinal Microflora on the Production of Interleukin 10 and Prostaglandin E2 in Serum and Kupffer Cells from Germfree and Conventional Mice

    Get PDF
    To determine why germfree (GF) mice are less productivity of proinflammatory cytokines than conventional (CV) mice, we studied serum levels of interleukin 10 (IL-10) and prostaglandin E2 (PGE2) in mice after treatment with lipopolyssacharide (LPS). A single injection of LPS caused an elevation of IL-10 in serum from GF, LPS-GF (germfree mice given drinking water containing LPS) and CV mice. The response was highest in serum from GF mice, and was lower in serum from LPS-GF mice compared with GF mice. Before LPS injection, serum PGE2 was significantly higher in CV and LPS-GF mice than in GF ones. After LPS injection, a higher level of PGE2 was maintained over 12 h in CV mice after LPS injection, while the LPS treatment reduced the level in LPS-GF mice and increased the level in GF mice. The levels of IL-10 in culture medium from Kupffer cells treated with LPS showed similar results to serum in GF and CV mice. These results suggest that high levels of IL-10 in serum from germfree mice may be partly responsible for the lower in vivo responsiveness of these proinflammatory cytokines to LPS in these mice, although PGE2 was not responsible for the lower responsiveness of these inflammatory cytokines to LPS

    Increased Systemic Glucose Tolerance with Increased Muscle Glucose Uptake in Transgenic Mice Overexpressing RXRγ in Skeletal Muscle

    Get PDF
    BACKGROUND: Retinoid X receptor (RXR) γ is a nuclear receptor-type transcription factor expressed mostly in skeletal muscle, and regulated by nutritional conditions. Previously, we established transgenic mice overexpressing RXRγ in skeletal muscle (RXRγ mice), which showed lower blood glucose than the control mice. Here we investigated their glucose metabolism. METHODOLOGY/PRINCIPAL FINDINGS: RXRγ mice were subjected to glucose and insulin tolerance tests, and glucose transporter expression levels, hyperinsulinemic-euglycemic clamp and glucose uptake were analyzed. Microarray and bioinformatics analyses were done. The glucose tolerance test revealed higher glucose disposal in RXRγ mice than in control mice, but insulin tolerance test revealed no difference in the insulin-induced hypoglycemic response. In the hyperinsulinemic-euglycemic clamp study, the basal glucose disposal rate was higher in RXRγ mice than in control mice, indicating an insulin-independent increase in glucose uptake. There was no difference in the rate of glucose infusion needed to maintain euglycemia (glucose infusion rate) between the RXRγ and control mice, which is consistent with the result of the insulin tolerance test. Skeletal muscle from RXRγ mice showed increased Glut1 expression, with increased glucose uptake, in an insulin-independent manner. Moreover, we performed in vivo luciferase reporter analysis using Glut1 promoter (Glut1-Luc). Combination of RXRγ and PPARδ resulted in an increase in Glut1-Luc activity in skeletal muscle in vivo. Microarray data showed that RXRγ overexpression increased a diverse set of genes, including glucose metabolism genes, whose promoter contained putative PPAR-binding motifs. CONCLUSIONS/SIGNIFICANCE: Systemic glucose metabolism was increased in transgenic mice overexpressing RXRγ. The enhanced glucose tolerance in RXRγ mice may be mediated at least in part by increased Glut1 in skeletal muscle. These results show the importance of skeletal muscle gene regulation in systemic glucose metabolism. Increasing RXRγ expression may be a novel therapeutic strategy against type 2 diabetes
    corecore