6 research outputs found
Conversion of cardiac bypass into an extracorporeal membrane oxygenation circuit: a case from Pakistan
A 35 days old neonate with d-loop transposition of great arteries, underwent an arterial switch operation following which he developed hypotension attributed to left ventricular failure. During cardiopulmonary resuscitation decision was made to place him on cardiac bypass again. Due to limited resources and unavailability of a specialized extracorporeal membrane oxygenator machine, the CPB was modified and converted an ECMO. The neonate was successfully decannulated after 72 hours and discharged home after 3 weeks of the operation without any sequel. ECMO is a viable option in developing countries and may help in improving the outcome especially in neonatal congenital heart disease
Right ventricular perforation: a rare complication of pulmonary artery catheterization
A 70 years old male underwent Coronary Artery Bypass and Graft (CABG) surgery. After induction, a Pulmonary Artery Catheter (PAC) was inserted via right IJV with some difficulty in achieving PA tracing. During distal RCA anastomosis, surgeon noticed PAC tip coming out of Right Ventricular (RV) surface. Resistance was felt on trying to pull PAC, so it was left there. Cardiac surgeon then opened the Right Atrium (RA) and pulled out the catheter. Multiple attempts during insertion of PA catheter should always raise the suspicion of PAC tip slipping back into the RV. It should be closely monitored during surgery and communicated to the surgeon
Deep hypothermic total circulatory arrest for internal carotid artery aneurysm extending into the cranium: experience from a developing country
Cardiopulmonary bypass is commonplace for acquired and congenital cardiac procedures. It has also stretched to facilitate complicated non-cardiac operations. Carotid artery aneurysms are treated both with surgical repair without cardiopulmonary bypass (CPB) and, occasionally, by utilizing CPB perfusion techniques. We have successfully repaired an internal carotid artery aneurysm, extending into cranium in a 30-year-old woman, by establishing deep hypothermic circulatory arrest on cardiopulmonary bypass
Phyto-Extract-Mediated Synthesis of Silver Nanoparticles Using Aqueous Extract of Sanvitalia procumbens, and Characterization, Optimization and Photocatalytic Degradation of Azo Dyes Orange G and Direct Blue-15
Green synthesis of silver nanoparticles (AgNPs) employing an aqueous plant extract has emerged as a viable eco-friendly method. The aim of the study was to synthesize AgNPs by using plant extract of Sanvitalia procumbens (creeping zinnia) in which the phytochemicals present in plant extract act as a stabilizing and reducing agent. For the stability of the synthesized AgNPs, different parameters like AgNO3 concentration, volume ratios of AgNO3, temperature, pH, and contact time were studied. Further, AgNPs were characterized by UV–visible spectroscopy, FT-IR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray Spectrometer) analysis. FT-IR analysis showed that the plant extract contained essential functional groups like O–H stretching of carboxylic acid, N–H stretching of secondary amides, and C–N stretching of aromatic amines, and C–O indicates the vibration of alcohol, ester, and carboxylic acid that facilitated in the green synthesis of AgNPs. The crystalline nature of synthesized AgNPs was confirmed by XRD, while the elemental composition of AgNPs was detected by energy dispersive X-ray analysis (EDX). SEM studies showed the mean particle diameter of silver nanoparticles. The synthesized AgNPs were used for photocatalytic degradation of Orange G and Direct blue-15 (OG and DB-15), which were analyzed by UV-visible spectroscopy. Maximum degradation percentage of OG and DB-15 azo dyes was observed, without any significant silver leaching, thereby signifying notable photocatalytic properties of AgNPs
Ecotoxicological Assessment of Heavy Metal and Its Biochemical Effect in Fishes
Level of toxic heavy metal concentration like lead (Pb), chromium (Cr), cadmium (Cd), iron (Fe), copper (Cu), zinc (Zn), and nickel (Ni) in thirty-six soft and hard organs and their impact on lipid profile of Hypophthalmichthys molitrix and Catla catla fish species inhibiting in Tanda Dam reservoir were investigated. The heavy metal concentrations in water, sediment, and fish of the different regions in the reservoir were determined with atomic absorption spectrophotometer. Lipid profile was carried out by AOAC official methods. The results showed that Pb was dominant among all the heavy metals in six organs, and its maximum concentration of Pb (22.5 mg kg-1 and 32.9 mg kg-1) was observed in scales in Hypophthalmichthys molitrix and tail of Catla catla, respectively. The maximum concentrations of Cd were observed in the head, scales, fins, and gills of Catla catla. The bioaccumulation of heavy metals was significantly different at (p≤0.01) within the organs and between the fish species. The lipid concentration was minimum in those organs where the concentrations of heavy metals were maximum. It is clear from the findings that heavy metal accumulation reduces the lipid content of fish. It is inevitable to monitor the Tanda Dam reservoir to safeguard human health