123 research outputs found

    Compressed Exponential Relaxation as Superposition of Dual Structure in Pattern Dynamics of Nematic Liquid Crystals

    Full text link
    Soft-mode turbulence (SMT) is the spatiotemporal chaos observed in homeotropically aligned nematic liquid crystals, where non-thermal fluctuations are induced by nonlinear coupling between the Nambu-Goldstone and convective modes. The net and modal relaxations of the disorder pattern dynamics in SMT have been studied to construct the statistical physics of nonlinear nonequilibrium systems. The net relaxation dynamics is well-described by a compressed exponential function and the modal one satisfies a dual structure, dynamic crossover accompanied by a breaking of time-reversal invariance. Because the net relaxation is described by a weighted mean of the modal ones with respect to the wave number, the compressed-exponential behavior emerges as a superposition of the dual structure. Here, we present experimental results of the power spectra to discuss the compressed-exponential behavior and the dual structure from a viewpoint of the harmonic analysis. We also derive a relationship of the power spectra from the evolution equation of the modal autocorrelation function. The formula will be helpful to study non-thermal fluctuations in experiments such as the scattering methods.Comment: 17pages, 3 figures, to be published on AIP conference proceedings for "The 4th International Symposium on Slow Dynamics in Complex Systems

    Observation and determination of abnormal rolls and abnormal zigzag rolls in electroconvection in homeotropic liquid crystals

    Get PDF
    Direct evidence for two different types of normal rolls and of zigzag rolls in homeotropically aligned nematic liquid crystals in a magnetic field is reported. The conventional normal rolls have the reflection symmetry in the xy plane. The instability, however, breaks the reflection symmetry y→-y on the director and then the abnormal rolls are expected to be observed. We have investigated the instability experimentally and discussed it in terms of the recent numerical results by Plaut et al. [Phys. Rev. Lett. 79, 2367 (1997)]. Due to the new instability, the abnormal zigzag rolls are also found below the Lifshitz frequency

    Prewavy instability of nematic liquid crystals in a high-frequency electric field

    Get PDF
    A kind of electrohydrodynamic instability, the prewavy instability, in nematic liquid crystals is reported. The characteristic of the instability was optically investigated and discussed in comparison with some similar instabilities. Obviously the instability partially shows an isotropic feature around the nematic-isotropic transition temperature. Owing to the characteristic properties of the flow and the spatial periodicity, it should be distinguished from a previously proposed isotropic instability

    Pattern formation of chevrons in the conduction regime in homeotropically aligned liquid crystals

    Get PDF
    We report on chevrons (herringbonelike patterns) observed in homeotropically aligned liquid crystals with high electric conductivity. We focus our attention on two types of chevrons observed in the conduction regime. The threshold voltage and the characteristic double periodicity of chevrons (i.e., the short wavelength λ1 of the striated rolls and the long wavelength λ2 of the chevron bands) have been measured as functions of the applied electric frequency f. With the aid of a crossed polarizer set, we have, in addition, determined the director field which shows a periodic in-plane rotation for our chevrons (with a wavelength λ2). We arrived at the types of chevrons after qualitatively different bifurcation sequences with increasing voltage. The frequency dependence of λ2 also shows a qualitatively different behavior with respect to the two types of chevrons. The experimental results are discussed in terms of recent theoretical investigations

    Prewavy instability of nematic liquid crystals in a high-frequency electric field

    Get PDF
    A kind of electrohydrodynamic instability, the prewavy instability, in nematic liquid crystals is reported. The characteristic of the instability was optically investigated and discussed in comparison with some similar instabilities. Obviously the instability partially shows an isotropic feature around the nematic-isotropic transition temperature. Owing to the characteristic properties of the flow and the spatial periodicity, it should be distinguished from a previously proposed isotropic instability
    corecore