163 research outputs found
The use of artificial neural networks to diagnose mastitis in dairy cattle
The use of milk sample categorization for diagnosing mastitis using Kohonen's self-organizing feature map (SOFM) is reported. Milk trait data of 14 weeks of milking from commercial dairy cows in New Zealand was used to train and test a SOFM network. The SOFM network was useful in discriminating data patterns into four separate mastitis categories. Several other artificial neural networks were tested to predict the missing data from the recorded milk traits. A multi-layer perceptron (MLP) network proved to be most accurate (R² = 0.84, r = 0.92) when compared to other MLP (R² = 0.83, r = 0.92), Elman (R² = 0.80, r = 0.92), Jordan (R² = 0.81, r = 0.92) or linear regression (R² = 0.72, r = 0.85) methods. It is concluded that the SOFM can be used as a decision tool for the dairy farmer to reduce the incidence of mastitis in the dairy herd
An association between lifespan and variation in insulin-like growth factor I receptor in sheep
Longevity in livestock is a valuable trait. When productive animals live longer, fewer replacement animals need to be raised. However, selection for longevity is not commonly the focus of breeding programs as direct selection for long-lived breeding stock is virtually impossible until late in the reproductive life of the animal. Additionally the underlying genetic factors or genes associated with longevity are either not known,
or not well understood. In humans, there is evidence that IGF 1 receptor (IGF1R) is involved in longevity. Polymorphism in the IGF1R gene has been associated with longevity in a number of species. Recently, 3 alleles
of ovine IGF1R were identified, but no analysis of the effect of IGF1R variation on sheep longevity has been reported. In this study, associations between ovine IGF1R variation, longevity and fertility were investigated.
Polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) was used to type IGF1R variation in 1,716 New Zealand sheep belonging to 6 breeds and 36 flocks. Ovine IGF1R C was associated with age when adjusting for flock (present 5.5 ± 0.2 yr, absent
5.0 ± 0.1 yr, P = 0.02). A general linear mixed effects model suggested an association (P = 0.06) between age and genotype, when correcting for flock. Pairwise comparison (least significant difference) of specific
genotypes revealed the difference to be between AA (5.0± 0.1 yr) and AC (5.6 ± 0.2 yr, P = 0.02). A weak negative Pearson correlation between fertility and longevity traits was observed (r = -0.25, P < 0.01). The finding of an association between variation in IGF1R and lifespan in sheep may be useful in prolonging the lifespan of sheep
Variation in bovine leptin gene affects milk fatty acid composition in New Zealand Holstein Friesian × Jersey dairy cows
Leptin is a protein hormone secreted from white adipose tissue. It regulates food/feed intake, body weight, immune function and reproduction. In our investigation, the polymerase chain reaction (PCR) amplification coupled with single-strand conformational polymorphism (SSCP) analysis was used to reveal variation in bovine leptin gene (LEP) in New Zealand (NZ) Holstein Friesian × Jersey (HF × J) dairy cows. Subsequent sequence analysis of a 430 bp amplicon spanning the entirety of exon 3 and part of the intron 2 region revealed three variant sequences (A₃, B₃ and C₃) containing a total of five nucleotide substitutions, all of which have been reported previously. Using general linear mixed-effect model analyses, the presence of variant A₃ (the most common variant) was associated with a decreased level of C15:1, C18:1 trans-11, C18:1 all trans, C18:2 trans-9, cis-12, C22:0 and C24:0 levels but increased levels of C12:1 and C13:0 iso (p<0.05). Variant B₃ was associated with reduced levels of C6:0, C8:0, C11:0, C13:0 and C20:0 but increased C17:0 iso and C24:0 levels (p<0.05). Variant C₃ was associated with decreased C17:0 iso levels but increased C20:0 (p<0.05) levels. In a genotype model, the A₃B₃ genotype was associated with increased levels of C22:0 and C24:0 but decreased C8:0, C10:0, C11:0, C13:0, C15:0 and grouped medium-chain fatty acid (MCFA) levels (p<0.05). Genotype A₃C₃ was found to be associated with decreased levels of C10:0, C11:0, C13:0 and grouped MCFA (p<0.05). This is the first report of findings of this kind in NZ HF × J cows, and they suggest that variation in exon 3 of bovine leptin gene could be explored as a means of decreasing the concentration of saturated fatty acids in milk
A preliminary investigation of myostatin gene (MSTN) variation in red deer (Cervus elaphus) and its implications for venison production in New Zealand
Myostatin (MSTN), also known as growth differentiation factor 8 (GDF-8), is a negative regulator of lean muscle tissue growth. Variation in the gene has been studied in many domesticated species, because of its potential to dramatically increase muscle mass. It has, however, not been investigated in red deer (Cervus elaphus). In this study, variation in MSTN intron 1 was investigated in 211 male New Zealand red deer, for which phenotypic measurements of M. Longissimus dorsi (eye muscle) (width, depth, and area, together with 12-month weight) were recorded. Two sequence variants (named A and B) differing by one nucleotide (c.373 + 224) were identified in the intron 1 region of the gene resulting in three genotypes (AA, AB, and BB; frequencies of 63.5%, 30.8%, and 5.7%, respectively), but no association between this variation and any of the quantitative measurements was detected. These results suggest that the deer MSTN is less variable than for other livestock species and that its activity may be controlled to maintain a size–growth equilibrium
Sequence variation in the bovine lipin-1 gene (LPIN1) and its association with milk fat and protein contents in New Zealand Holstein-Friesian × Jersey (HF × J)-cross dairy cows
Lipin-1 is known to play a regulatory role in tissues that function in lipid metabolism. In dairy cows, the lipin-1 gene (LPIN1) is highly expressed in the mammary gland, but its function in milk production is less understood. In this study, we used PCR-single strand conformation polymorphism analysis to investigate sequence variation in three regions of bovine LPIN1 in New Zealand Holstein-Friesian × Jersey (HF × J)-cross dairy cows, including part of the 5′ non-coding region, the region containing the LPIN1β-spliced exon, and the sixth coding exon that encodes the putative transcriptional activating domain of the protein. No variation was found in the LPIN1β-spliced exon, but two sequence variants containing one single nucleotide polymorphism (SNP) were identified in the 5′ non-coding region and four sequence variants containing four non-synonymous SNPs were identified in the sixth coding exon. Among the three common variants of the sixth coding exon, variant C was found to be associated with an increase in milk fat percentage (presence 4.96 ± 0.034% vs. absence 4.81 ± 0.050%; p = 0.006) and milk protein percentage (presence 4.09 ± 0.017% vs. absence 3.99 ± 0.025%; p = 0.001), but no associations (p > 0.01) were detected for milk yield. These results suggest that variation in LPIN1 affect the synthesis of fat and proteins in milk and has potential as a gene-marker to improve milk production traits
Haplotypes of the ovine adiponectin gene and their association with growth and carcass traits in New Zealand Romney lambs
Adiponectin plays an important role in energy homeostasis and metabolism in mammalian adipose tissue. In this study, the relationship between adiponectin gene (ADIPOQ) haplotypes and variation in growth and carcass traits in New Zealand (NZ) Romney lambs was investigated using General Linear Models (GLMs). Eight haplotypes were found in these lambs and they were composed of the four previously reported promoter fragment sequences (A₁–D₁) and three previously reported
intron 2–exon 3 sequences (A₃–C₃). The frequencies of the haplotypes ranged from 0.07% to 45.91%.
The presence of A₁–A₃ was associated with a decreased pre-weaning growth rate (p = 0.037), and decreased leg lean-meat yield (p = 0.001), loin lean-meat yield (p = 0.018) and total lean-meat yield (p = 0.004). The presence of A₁–C₃ was associated with increased carcass fat depth over the 12th rib (V-GR; p = 0.001) and a decreased proportion of loin lean-meat yield (p = 0.045). The presence of B₁–A₃ was associated with an increased proportion of leg lean-meat yield (p = 0.016) and proportion
of shoulder lean-meat yield (p = 0.030). No associations were found with birth weight, tailing weight and weaning weight. These results suggest that ovine ADIPOQ may have value as a genetic marker for NZ Romney sheep breeding
The mean staple length of wool fibre is associated with variation in the ovine keratin-associated protein 21-2 gene
Wool and hair fibres consist of a variety of proteins, including the keratin-associated proteins (KAPs). In this study, a putative ovine homologue of the human KAP21-2 gene (KRTAP21-2) was identified. It was located on chromosome 1 as a 201-bp open reading frame (ORF) in the ovine genome assembly from a Texel sheep (v.4 NC_019458.2: nt122932727 to 122932927). A polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of this ORF, and subsequent DNA sequencing, identified five sequences (named A-E). The putative amino acid sequences that would be produced, shared some identity with each other and with other KAPs, but they were most similar to ovine KAP21-1, and phylogenetically related to human KAP21-2. The location of the ovine KRTAP21-2 sequence was consistent with the location of human KRTAP21-2, and this suggests they represent different variant forms of ovine KRTAP21-2. Variation in this gene was investigated in 389 Merino (sire) × Southdown-cross (ewe) lambs. These were derived from four independent sire-lines. The sequence variation was found to be associated with variation in five wool traits: including mean staple length (MSL), mean fibre diameter (MFD), fibre diameter standard deviation (FDSD), prickle factor (PF), and greasy fleece weight (GFW). The most persistent effect of KRTAP21-2 variation was with variation in MSL; with the MSL of sheep of genotype AC being 12.5% greater than those of genotype CE. A similar effect was observed from individual variant absence/presence models. This suggests that KRTAP21-2 should be further investigated as a possible gene-marker for improving MSL
Genetic diversity of selected genes that are potentially economically important in feral sheep of New Zealand
Background: Feral sheep are considered to be a source of genetic variation that has been lost from their
domestic counterparts through selection.
Methods: This study investigates variation in the genes KRTAP1-1, KRT33, ADRB3 and DQA2 in Merino-like feral
sheep populations from New Zealand and its offshore islands. These genes have previously been shown to
influence wool, lamb survival and animal health.
Results: All the genes were polymorphic, but no new allele was identified in the feral populations. In some of
these populations, allele frequencies differed from those observed in commercial Merino sheep and other breeds
found in New Zealand. Heterozygosity levels were comparable to those observed in other studies on feral sheep.
Our results suggest that some of the feral populations may have been either inbred or outbred over the duration
of their apparent isolation.
Conclusion: The variation described here allows us to draw some conclusions about the likely genetic origin of
the populations and selective pressures that may have acted upon them, but they do not appear to be a source of
new genetic material, at least for these four genes.This research was supported by the Brian Mason Scientific and Technical
Trust
Variation in ovine DGAT1 and its association with carcass muscle traits in Southdown sheep
Diacylglycerol O-acyltransferase 1 (DGAT1) is a microsomal enzyme that plays a key role in the synthesis of triglycerides. Its gene (DGAT1) is regarded as a candidate gene for variation in milk and meat traits in cattle. The objective of this study was to use a PCR single-strand conformation polymorphism approach to explore sequence variation in two regions of ovine DGAT1 and to assess its effect on meat traits in New Zealand Southdown sheep. Three variant nucleotide sequences were identified in each region, with two single nucleotide polymorphisms (SNPs) and one nucleotide deletion being detected in intron 1 and two SNPs being found in exon 17. The effect of the exon 17 variation was not investigated due to one variant being predominant and the other two variants occurring at low frequencies. In intron 1, one variant (B₁) was found to be associated with increase loin meat yield, suggesting that this may have value as a gene marker for improving meat traits
Ovine FABP₄ variation and its association with flystrike susceptibility
Flystrike is a major cost and a welfare issue for the New Zealand sheep industry. There are several factors that can predispose sheep to flystrike, such as having fleecerot, a urine-stained breech, and “dags” (an accumulation of fecal matter in the wool of the breech). The FABP₄ gene (FABP₄) has been associated with variation in ovine fleecerot resistance, with a strong genetic correlation existing between fleecerot and flystrike occurrence. In this study, blood samples were collected from sheep with and without flystrike for DNA typing. PCR-SSCP analyses were used to genotype two regions of ovine FABP₄. Sheep with the A₁ variant of FABP₄ were found to be less likely (odds ratio 0.689, P = 0.014) to have flystrike than those without A₁. The likelihood of flystrike occurrence decreased as copy number of A₁ increased (odds ratio 0.695, P = 0.006). This suggests that FABP₄ might be a candidate gene for flystrike resilience in sheep, although further research is required to verify this association
- …