1,641 research outputs found
Symmetry, incommensurate magnetism and ferroelectricity: the case of the rare-earth manganites RMnO3
The complete irreducible co-representations of the paramagnetic space group
provide a simple and direct path to explore the symmetry restrictions of
magnetically driven ferroelectricity. The method consists of a straightforward
generalization of the method commonly used in the case of displacive modulated
systems and allows us to determine, in a simple manner, the full magnetic
symmetry of a given phase originated from a given magnetic order parameter. The
potential ferroic and magneto-electric properties of that phase can then be
established and the exact Landau free energy expansions can be derived from
general symmetry considerations. In this work, this method is applied to the
case of the orthorhombic rare-earth manganites RMnO3. This example will allow
us to stress some specific points, such as the differences between commensurate
or incommensurate magnetic phases regarding the ferroic and magnetoelectric
properties, the possible stabilization of ferroelectricity by a single
irreducible order parameter or the possible onset of a polarization oriented
parallel to the magnetic modulation. The specific example of TbMnO3 will be
considered in more detail, in order to characterize the role played by the
magneto-electric effect in the mechanism for the polarization rotation induced
by an external magnetic field.Comment: Conference: Aperiodic`0
Caste, Kinship, and Life Course: Rethinking Women's Work and Agency in Rural South India
This paper reexamines the linkages between women's work, agency, and well-being based on a household survey and in-depth interviews conducted in rural Tamil Nadu in 2009 and questions the prioritization of workforce participation as a path to gender equality. It emphasizes the need to unpack the nature of work performed by and available to women and its social valuation, as well as women's agency, particularly its implications for decision making around financial and nonfinancial household resources in contexts of socioeconomic change. The effects of work participation on agency are mediated by factors like age and stage in the life cycle, reproductive success, and social location – especially of caste – from which women enter the workforce
Unusually Luminous Giant Molecular Clouds in the Outer Disk of M33
We use high spatial resolution (~7pc) CARMA observations to derive detailed
properties for 8 giant molecular clouds (GMCs) at a galactocentric radius
corresponding to approximately two CO scale lengths, or ~0.5 optical radii
(r25), in the Local Group spiral galaxy M33. At this radius, molecular gas
fraction, dust-to-gas ratio and metallicity are much lower than in the inner
part of M33 or in a typical spiral galaxy. This allows us to probe the impact
of environment on GMC properties by comparing our measurements to previous data
from the inner disk of M33, the Milky Way and other nearby galaxies. The outer
disk clouds roughly fall on the size-linewidth relation defined by
extragalactic GMCs, but are slightly displaced from the luminosity-virial mass
relation in the sense of having high CO luminosity compared to the inferred
virial mass. This implies a different CO-to-H2 conversion factor, which is on
average a factor of two lower than the inner disk and the extragalactic
average. We attribute this to significantly higher measured brightness
temperatures of the outer disk clouds compared to the ancillary sample of GMCs,
which is likely an effect of enhanced radiation levels due to massive star
formation in the vicinity of our target field. Apart from brightness
temperature, the properties we determine for the outer disk GMCs in M33 do not
differ significantly from those of our comparison sample. In particular, the
combined sample of inner and outer disk M33 clouds covers roughly the same
range in size, linewidth, virial mass and CO luminosity than the sample of
Milky Way GMCs. When compared to the inner disk clouds in M33, however, we find
even the brightest outer disk clouds to be smaller than most of their inner
disk counterparts. This may be due to incomplete sampling or a potentially
steeper cloud mass function at larger radii.Comment: Accepted for Publication in ApJ; 7 pages, 4 figure
Recommended from our members
Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops.
Synthesis-dependent strand annealing (SDSA) is the preferred mode of homologous recombination in somatic cells leading to an obligatory non-crossover outcome, thus avoiding the potential for chromosomal rearrangements and loss of heterozygosity. Genetic analysis identified the Srs2 helicase as a prime candidate to promote SDSA. Here, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent fashion and with a distinct polarity. Specifically, we partly reconstitute the SDSA pathway using Rad51, Rad54, RPA, RFC, DNA Polymerase δ with different forms of PCNA. Consistent with genetic data showing the requirement for SUMO and PCNA binding for the SDSA role of Srs2, Srs2 displays a slight but significant preference to disrupt extending D-loops over unextended D-loops when SUMOylated PCNA is present, compared to unmodified PCNA or monoubiquitinated PCNA. Our data establish a biochemical mechanism for the role of Srs2 in crossover suppression by promoting SDSA through disruption of extended D-loops
RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells.
The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors
A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the MetaProteomeAnalyzer
The investigation of microbial proteins by mass spectrometry (metaproteomics) is a key technology for simultaneously assessing the taxonomic composition and the functionality of microbial communities in medical, environmental, and biotechnological applications. We present an improved metaproteomics workflow using an updated sample preparation and a new version of the MetaProteomeAnalyzer software for data analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed to aim at fast analysis of a broad range of different samples in less than 24 h. The improved workflow generated at least two times as many protein identifications than our previous workflow, and a drastic increase of taxonomic and functional annotations. Improvements of all aspects of the workflow, particularly the speed, are first steps toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical and environmental samples. The MetaProteomeAnalyzer is provided to the scientific community as a central remote server solution at www.mpa.ovgu.de.Peer Reviewe
The role of raffinose in the cold acclimation response of Arabidopsis thaliana
AbstractIn many plants raffinose family oligosaccharides are accumulated during cold acclimation. The contribution of raffinose accumulation to freezing tolerance is not clear. Here, we investigated whether synthesis of raffinose is an essential component for acquiring frost tolerance. We created transgenic lines of Arabidopsis thaliana accessions Columbia-0 and Cape Verde Islands constitutively overexpressing a galactinol synthase (GS) gene from cucumber. GS overexpressing lines contained up to 20 times as much raffinose as the respective wild-type under non-acclimated conditions and up to 2.3 times more after 14 days of cold acclimation at 4 °C. Furthermore, we used a mutant carrying a knockout of the endogenous raffinose synthase (RS) gene. Raffinose was completely absent in this mutant. However, neither the freezing tolerance of non-acclimated leaves, nor their ability to cold acclimate were influenced in the RS mutant or in the GS overexpressing lines. We conclude that raffinose is not essential for basic freezing tolerance or for cold acclimation of A. thaliana
Diverging thermal expansion of the spin-ladder system (CHN)CuBr
We present high-resolution measurements of the -axis thermal
expansion and magnetostriction of piperidinium copper bromide \hp. The
experimental data at low temperatures is well accounted for by a two-leg
spin-ladder Hamiltonian. The thermal expansion shows a complex behaviour with
various sign changes and approaches a divergence at the critical
fields. All low-temperature features are semi-quantitatively explained within a
free fermion model; full quantitative agreement is obtained with Quantum Monte
Carlo simulations.Comment: 4 pages, 5 figures; version 2 is slightly shortened and typos are
correcte
Surveying Geology Concepts In Education Standards For A Rapidly Changing Global Context
Internationally much attention is being paid to which of a seemingly endless list of scientific concepts should be taught to schoolchildren to enable them to best participate in the global economy of the 21st Century. In regards to science education, the concepts framing the subject of geology holds exalted status as core scientific principles in the Earth and space sciences domain across the globe. Economic geology plays a critical role in the global economy, historical geology guides research into predictions related by global climate change, and environmental geology helps policy makers understand the impact of human enterprises on the land, among many other geological sciences-laden domains. Such a situation begs the question of which geology concepts are being advocated in schools. Within the U.S. where there is no nationally adopted curriculum, careful comparative analysis reveals surprisingly little consensus among policy makers and education reform advocates about which geology concepts, if any, should be included in the curriculum. This lack of consensus manifests itself in few traditional or modern geology concepts being taught to U.S. school children
- …