1,191 research outputs found
Pressure effects on collective density fluctuations in water and protein solutions
Neutron Brillouin scattering and molecular dynamics simulations have been used to investigate protein hydration water density fluctuations as a function of pressure. Our results show significant differences between the pressure and density dependence of collective dynamics in bulk water and in concentrated protein solutions. Pressure-induced changes in the tetrahedral order of the water HB network have direct consequences for the high-frequency sound velocity and damping coefficients, which we find to be a sensitive probe for changes in the HB network structure as well as the wetting of biomolecular surfaces
Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation
The Amazon and Congo basins are the two largest continuous blocks of tropical forest with a central role for global biogeochemical cycles and ecology. However, both biomes differ in structure and species richness and composition. Understanding future directions of the response of both biomes to environmental change is paramount. We used one elevational gradient on both continents to investigate functional and stoichiometric trait shifts of tropical forest in South America and Africa. We measured community-weighted functional canopy traits and canopy and topsoil delta N-15 signatures. We found that the functional forest composition response along both transects was parallel, with a shift towards more nitrogen-conservative species at higher elevations. Moreover, canopy and topsoil delta N-15 signals decreased with increasing altitude, suggesting a more conservative N cycle at higher elevations. This cross-continental study provides empirical indications that both South American and African tropical forest show a parallel response with altitude, driven by nitrogen availability along the elevational gradients, which in turn induces a shift in the functional forest composition. More standardized research, and more research on other elevational gradients is needed to confirm our observations
The census of cataclysmic variables in the ROSAT Bright Survey
We give an identification summary and results of polarimetric, photometric
and spectroscopic follow-up observations of new, X-ray bright cataclysmic
variables. These were identified as optical counterparts of high galactic
latitude sources in the ROSAT All-Sky Survey. This optical identification
programme is termed the ROSAT Bright Survey (RBS) and represents the first
complete soft X-ray selected, flux-limited sample of CVs at high galactic
latitude (survey area ~20400 sq.deg.). The systems described here escaped
previous identification programmes since these surveys were designed to
identify even brighter than ours or particularly soft X-ray sources. Among the
11 new RBS-CVs we find 6 magnetic systems of AM Herculis type, 4 dwarf novae
(among them one candidate), and one particularly bright system of uncertain
nature, tentatively identified as dwarf nova or symbiotic binary. Orbital
periods could be determined for all magnetic systems which range from 87.1 min
to 187.7 min. Three of the new dwarf novae have moderate to high inclination
and two of them might be eclipsing. Using non-magnetic systems only we derive a
space density of CVs of ~3 10^{-5} pc^{-3}. This limit rests on the two new
nearby, low-luminosity systems RBS0490 and RBS1955, with estimated distances of
30pc only and luminosities below 10^{30} erg s^{-1}.Comment: Astronomy and Astrophys., in press, 17 pages, 19 figures, full paper
with finding charts at http://www.aip.de/People/ASchwope/axels_papers.htm
High-resolution X-ray spectroscopy and imaging of the nuclear outflow of the starburst galaxy NGC 253
Aims: Using XMM-Newton data, we have aimed to study the nuclear outflow of
the nearby starburst galaxy NGC 253 in X-rays with respect to its morphology
and to spectral variations along the outflow. Methods: We analysed XMM-Newton
RGS spectra, RGS brightness profiles in cross-dispersion direction, narrow band
RGS and EPIC images and EPIC PN brightness profiles of the nuclear region and
of the outflow of NGC 253. Results: We detect a diversity of emission lines
along the outflow of NGC 253. This includes the He-like ions of Si, Mg, Ne and
O and their corresponding ions in the next higher ionisation state.
Additionally transitions from Fe XVII and Fe XVIII are prominent. The derived
temperatures from line ratios along the outflow range from 0.21+/-0.01 to
0.79+/-0.06 keV and the ratio of Fe XVII lines indicates a predominantly
collisionally ionised plasma. Additionally we see indications of a recombining
or underionized plasma in the Fe XVII line ratio. Derived electron densities
are 0.106+/-0.018 cm^-3 for the nuclear region and 0.025+/-0.003 cm^-3 for the
outflow region closest to the centre. The RGS image in the O VIII line energy
clearly shows the morphology of an outflow extending out to ~750 pc along the
south-east minor axis, while the north-west part of the outflow is not seen in
O VIII due to the heavy absorption by the galactic disc. This is the first time
that the hot wind fluid has been detected directly. The limb brightening seen
in Chandra and XMM-Newton EPIC observations is only seen in the energy range
containing the Fe XVII lines (550-750 eV). In all other energy ranges between
400 and 2000 eV no clear evidence of limb brightening could be detected.Comment: 14 pages, 7 figures, 3 tables, accepted for publication on A&A, v2:
typos corrected, electron densities and table with emission line flux added,
discussion improve
Connectivity between marine reserves and exploited areas in the philopatric reef fish Chrysoblephus laticeps (Teleostei: Sparidae)
"No-take‟ Marine Protected Areas (MPAs) are successful in protecting populations of many exploited fish species, but it is often unclear whether networks of MPAs are adequately spaced to ensure connectivity among reserves, and whether spillover occurs into adjacent exploited areas. Such issues are particularly important in species with low dispersal potential, many of which exist as genetically distinct regional stocks.The roman, Chrysoblephus laticeps, is an overexploited, commercially important fishery species endemic to South Africa. Post-recruits display resident behavior and occupy small home ranges, making C. laticeps a suitable model species to investigate connectivity in marine teleosts with potentially low dispersal ability. We used multilocus data from two types of highly variable genetic markers (mitochondrial DNA control region and microsatellites) to clarify patterns of genetic connectivity and population structure in C. laticeps using samples from two MPAs and several moderately or severely exploited regions. Despite using analytical tools that are sensitive to detect even subtle genetic structure, we found that this species exists as a single, well-mixed stock throughout its core distribution. This finding lends supports to the status of MPAs as an adequate tool for managing overexploited marine teleosts. Even though adult dispersal out of MPAs is limited, the fact that the large adults in these reserves produce exponentially more offspring than their smaller counterparts in exploited areas makes MPAs a rich source of recruits. We nonetheless caution against concluding that the lack of structure identified in C. laticeps and several other southern African teleosts can be considered to be representative of marine teleosts in this region in general. Many such species are represented in more than one marine biogeographic province and may be comprised of regionally-adapted stocks that need to be managed individually
Evolving coral reef conservation with genetic information
Targeted conservation and management programs are crucial for mitigating anthropogenic threats to declining biodiversity. Although evolutionary processes underpin extant patterns of biodiversity, it is uncommon for resource managers to explicitly consider genetic data in conservation prioritization. Genetic information is inherently relevant to management because it describes genetic diversity, population connectedness, and evolutionary history; thereby typifying their behavioral traits, physiological climate tolerance, evolutionary potential, and dispersal ability. Incorporating genetic information into spatial conservation prioritization starts with reconciling the terminology and techniques used in genetics and conservation science. Genetic data vary widely in analyses and their interpretations can be challenging even for experienced geneticists. Therefore, identifying objectives, decision rules, and implementations in decision support tools specifically for management using genetic data is challenging. Here, we outline a framework for eight genetic system characteristics, their measurement, and how they could be incorporated in spatial conservation prioritization for two contrasting objectives: biodiversity preservation vs maintaining ecological function and sustainable use. We illustrate this framework with an example using data from Tridacna crocea (Lamarck, 1819) (boring giant clam) in the Coral Triangle. We find that many reefs highlighted as conservation priorities with genetic data based on genetic subregions, genetic diversity, genetic distinctness, and connectivity are not prioritized using standard practices. Moreover, different characteristics calculated from the same samples resulted in different spatial conservation priorities. Our results highlight that omitting genetic information from conservation decisions may fail to adequately represent processes regulating biodiversity, but that conservation objectives related to the choice of genetic system characteristics require careful consideration
- …